买正宗三七,就上三七通
当前位置:首页/基地图片> 三七皂苷的结构式,我要查询七叶针剂的用途

三七皂苷的结构式,我要查询七叶针剂的用途

本文目录一览我要查询七叶针剂的用途2,哪位高手知道三七总皂苷化学结构和生理作用啊3,什么是人参皂苷rh1人参皂苷rh1的作用是什么化学式怎么写搜4,三七总皂苷简介5,什么是四甲基氨基化合物6,怎样理解极性转换原则谢谢了大神帮忙啊7,非极……

本文目录一览

1,我要查询七叶针剂的用途

是不是七叶皂甙针,如是,它功能主要是活血祛瘀,舒筋活络
[植物来源] 本品为七叶树科植物天师栗(aesculus wilsonii rehd.)的干燥成熟果实(娑罗子)提取物得到的皂苷钠盐。 [结构式] [分子式及分子量] c55h85nao24;1153.2 [物理性质] 白色粉末或结晶性粉末,味苦涩而辣,具引湿性 [药理作用] 抗渗出和增加静脉张力药。具有消肿、抗炎和改善血液循环的作用。用于脑水肿,创伤或手术后引起的肿胀;也用于静脉回流障碍性疾病。

三七皂苷的结构式

2,哪位高手知道三七总皂苷化学结构和生理作用啊

药物名称:三七总皂苷英文名:Sanqi Panax Notoginseng别名: 田七人参注射液 ,血栓通注射液 适应症: 适用于视网膜中央静脉阻塞、眼前房出血、青光眼、脑血管病后遗症的治疗,也可用于治疗病毒性肝炎。 用量用法: 肌注:每次2~4ml,每日1~2次。静注或静滴:每次2~6ml, 等渗盐水或50%葡萄糖液20~40ml中静注,或用10%葡萄糖液250ml稀释后静滴,每日1~2次。 规格: 针剂:2ml、5ml(每ml含人参总皂甙0.05g)。 类别:血管扩张药

三七皂苷的结构式

3,什么是人参皂苷rh1人参皂苷rh1的作用是什么化学式怎么写 搜

人参的主要成分是皂苷类,人参皂苷rh1为人参皂苷的一种,还有人参皂苷rb1、rb2、rd、rc、re、rg1、rg2等等。可由五加科植物人参、三七等提取分离而得。人参皂苷rh1的作用主要是促进肝细胞增殖何促进DNA合成的作用,可用于治疗和预防肝炎、肝硬化。人参皂苷rh1化学式为C36H62O9
人参对中枢神经系统的作用:对神经系统有双向调节作用,即既可以促进神经系统工作(小剂量),也有抑制其工作的作用(过量)。人参皂苷 rg类有促进作用,人参皂苷rb类有抑制作用。人参皂苷rg1有益智作用,与学习过程有关,而人参皂苷rb1与记忆作用有关。
【分 子 式】C36H62O9 ,人参皂苷Rh1的医药用途人参皂苷Rh1的医药用途。其特征在于:人参皂苷Rh1的促智、神经保护、抗脑缺血、刺激骨髓造血、抗软骨退变、防治白内障作用,可期望成为痴呆综合征、帕金森氏病、缺血性心脑血管病、贫血、骨关节炎、白内障的治疗药物。

三七皂苷的结构式

4,三七总皂苷简介

目录 1 拼音 2 英文参考 3 三七总皂苷药典标准 3.1 品名 3.2 来源 3.3 制法 3.4 性状 3.5 鉴别 3.6 检查 3.6.1 干燥失重 3.6.2 炽灼残渣 3.6.3 溶液的颜色 3.6.4 蛋白质 3.6.5 鞣质 3.6.6 树脂 3.6.7 草酸盐 3.6.8 钾离子 3.6.9 重金属及有害元素 3.6.10 树脂残留 3.6.11 色谱条件与系统适用性试验 3.6.12 对照品溶液的制备 3.6.13 供试品溶液的制备 3.6.14 测定法 3.6.15 异常毒性 3.6.16 热原 3.7 指纹图谱 3.8 含量测定 3.8.1 色谱条件与系统适用性试验 3.8.2 对照提取物溶液的制备 3.8.3 供试品溶液的制备 3.8.4 测定法 3.9 贮藏 3.10 制剂 3.11 版本 4 三七总皂苷说明书 4.1 药品名称 4.2 英文名称 4.3 三七总皂苷的别名 4.4 分类 4.5 剂型 4.6 三七总皂苷的药理作用 4.7 三七总皂苷的药代动力学 4.8 三七总皂苷的适应证 4.9 三七总皂苷的禁忌证 4.10 注意事项 4.11 三七总皂苷的不良反应 4.12 三七总皂苷的用法用量 4.13 三七总皂苷与其它药物的相互作用 4.14 专家点评 1 拼音 sān qī zǒng zào gān 2 英文参考 Panax Notoginsenosidum 3 三七总皂苷药典标准 3.1 品名 三七总皂苷 Sanqi Zongzaogan NOTOGINSENG TOTAL SAPONINS 3.2 来源 本品为五加科植物三七Panax notoginseng (Burk) F.H. Chen.的主根或根茎经加工制成的总皂苷。 3.3 制法 取三七粉碎成粗粉,用70%的乙醇提取,滤过,滤液减压浓缩,滤过,过苯乙烯型非极性或弱极性共聚体大孔吸附树脂柱,用水洗涤,水洗液弃去,以80%的乙醇洗脱,洗脱液减压浓缩,脱色,精制,减压浓缩至浸膏,干燥,即得。 3.4 性状 本品为类白色至淡黄色的无定形粉末;味苦、微甘。 3.5 鉴别 取本品,照[含量测定]项下的方法试验,供试品色谱图中应呈现与三七总皂苷对照提取物中三七皂苷R1、人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rd色谱峰保留时间相同的色谱峰。 3.6 检查 3.6.1 干燥失重 取本品,在80℃干燥至恒重,减失重量不得过5.0%(2010年版药典一部附录Ⅸ G)。 3.6.2 炽灼残渣 不得过0.5%(2010年版药典一部附录Ⅸ J)。 3.6.3 溶液的颜色 取本品适量,加水制成每1ml含三七总皂苷25mg的溶液,与黄色4号标准比色液(2010年版药典一部附录ⅪA)比较,不得更深。有关物质(注射剂用) 3.6.4 蛋白质 取本品50mg,加水1ml溶解,依法检查(2010年版药典一部附录Ⅸ S),应符合规定。 3.6.5 鞣质 取本品50mg,加水1ml溶解,依法检查(2010年版药典一部附录Ⅸ S),应符合规定。 3.6.6 树脂 取本品250mg,加水5ml溶解,依法检查(2010年版药典一部附录Ⅸ S),应符合规定。 3.6.7 草酸盐 取本品200mg,加水4ml溶解,依法检查(2010年版药典一部附录Ⅸ S),应符合规定。 3.6.8 钾离子 取本品0.1g,缓缓炽灼至完全炭化,再在500~600℃炽灼使完全灰化,依法检查(2010年版药典一部附录Ⅸ S),应符合规定。 3.6.9 重金属及有害元素 照铅、镉、砷、汞、铜测定法(2010年版药典一部附录Ⅸ B)测定,铅不得过百万分之五;镉不得过千万分之三;砷不得过百万分之二;汞不得过千万分之二;铜不得过百万分之二十。 3.6.10 树脂残留 照残留溶剂测定法(2010年版药典二部附录Ⅷ P第二法)测定。 3.6.11 色谱条件与系统适用性试验 以键合/交联聚乙二醇为固定相的石英毛细管柱(柱长为30m,内径为0.25mm,膜厚度为0.25μm);柱温为程序升温,起始温度为60℃,保持16分钟,再以每分钟20℃升温至200℃,保持2分钟;用氢火焰离子化检测器检测,检测器温度300℃;进样口温度240℃;载气为氮气,流速为每分钟1.0ml。顶空进样,顶空瓶平衡温度为90℃,平衡时间为30分钟。理论板数以邻二甲苯峰计算应不低于40000,各待测峰之间的分离度应符合规定。 3.6.12 对照品溶液的制备 精密称取正己烷、苯、甲苯、对二甲苯、邻二甲苯、苯乙烯、1,2二乙基苯和二乙烯苯对照品适量,加N,N二甲基乙酰胺制成每1ml中分别含20μg、4μg、20μg、20μg、20μg、20μg、20μg、20μg的溶液,作为对照品贮备液。精密吸取上述贮备液2ml,置50ml量瓶中,加25% N,N二甲基乙酰胺溶液稀释至刻度,摇匀,精密量取5ml,置20ml顶空瓶中,密封,即得。 3.6.13 供试品溶液的制备 取本品约0.1g,精密称定,置20ml顶空瓶中,精密加入25% N,N二甲基乙酰胺溶液5ml,密封,摇匀,即得。 3.6.14 测定法 分别精密量取顶空气体1ml,注入气相色谱仪,测定,即得。 本品含苯不得过0.0002%,含正己烷、甲苯、对二甲苯、邻二甲苯、苯乙烯、1,2二乙基苯和二乙烯苯均不得过0.002%(供注射用)。 3.6.15 异常毒性 取本品,加氯化钠注射液制成每1ml含三七总皂苷5.0mg的溶液,作为供试品溶液。取体重为17~20g小鼠5只,在4~5秒内每只小鼠注射供试品溶液0.5ml于尾静脉中,全部小鼠在给药后48小时内不得有死亡;如有死亡,另取体重为18~19g的小鼠10只复试,全部小鼠在48小时内不得有死亡(供注射用)。 3.6.16 热原 取本品,加氯化钠注射液制成每1ml含50mg的溶液,依法检查(2010年版药典一部附录XIII A),剂量按家兔体重每1kg注射0.5ml,应符合规定(供注射用)。 3.7 指纹图谱 取本品,照[含量测定]项下的方法试验,记录色谱图。 按中药色谱指纹图谱相似度评价系统,供试品指纹图谱与对照指纹图谱经相似度计算,5分钟后的色谱峰,其相似度不得低予0.95。 对照指纹图谱 峰1:三七皂苷R1 峰2:人参皂苷Rg1 峰3:人参皂苷Re峰4:人参皂苷Rb1 峰5:人参皂苷Rd 3.8 含量测定 照高效液相色谱法(2010年版药典一部附录Ⅵ D)测定。 3.8.1 色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈为流动相A,以水为流动相B,按下表中的规定进行梯度洗脱;流速每分钟为1.5ml;检测波长为203nm;柱温25℃。人参皂苷Rg1与人参皂苷Re的分离度应大于1.5。理论板数按人参皂苷Rg1峰计算应不低于6000。 时间(分钟) 流动相A(%) 流动相B(%) 0~20 20 80 20—45 20→46 80→54 45~55 46→55 54→45 55~60 55 45 3.8.2 对照提取物溶液的制备 取三七总皂苷对照提取物适量,精密称定,加70%甲醇溶解并稀释制成每1ml含2.5mg的溶液,即得。 3.8.3 供试品溶液的制备 取本品25mg,精密称定,置10ml量瓶中,加70%甲醇溶解并稀释至刻度,摇匀,即得。 3.8.4 测定法 分别精密吸取对照提取物溶液与供试品溶液各10μl,注入液相色谱仪,测定,即得。 本品按干燥品计算,含三七皂苷R1( C47H80O18)不得少于5.0%、人参皂苷Rg1(C42H72O14)不得少于25.0%、人参皂苷Re(C48H82O18)不得少于2.5%、人参皂苷Rb1(C54H92O23)不得少于30.0%、人参皂苷Rd(C48H82O18)不得少于5.0%,且三七皂苷R1、人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rd总量不得低于75%(供口服用)或85%(供注射用)。 3.9 贮藏 密封,置干燥处。 3.10 制剂 口服制剂 3.11 版本 《中华人民共和国药典》2010年版 4 三七总皂苷说明书 4.1 药品名称 三七总皂苷 4.2 英文名称 Panax Notoginsenosidum 4.3 三七总皂苷的别名 血栓通;田七人参总皂苷;田七人参总皂甙;血塞通;Panax Pseudoginseng 4.4 分类 神经系统药物 > 脑血管扩张药物 > 其他 4.5 剂型 针剂:100mg(2ml),250mg(5ml) 4.6 三七总皂苷的药理作用 系由三七(Panaxnotoginreng)的叶中分离提取的三七总苷制成的注射剂,具有活血化淤、通脉活络以及抑制血小板聚集和增加脑血流量的作用。对实验性血栓形成,抑制率达92.13%,且能显著降低血液粘度及纤维蛋白质含量,并能使全血凝固时间、凝血酶原时原时间、凝血酶时时间显著延长。 4.7 三七总皂苷的药代动力学 急性毒性试验中,小鼠灌胃给药的半数致死量(LD50)为16020±1508mg/kg,皮下给药为594.52±15.54mg/kg。亚急性毒性试验中,家兔一天静脉注射三七总皂苷110mg/kg,24天后对血象、肝肾功能等未见明显影响,与对照组比较,其心、肝、肾、肠、肾上腺等实质性器官亦未见明显的形态学改变。 4.8 三七总皂苷的适应证 缺血性脑血管疾病、脑出血后遗症瘫痪以及视网膜中央静脉阻塞、眼前房出血、青光眼等,也可用于治疗病毒性肝炎。 4.9 三七总皂苷的禁忌证 (尚不明确) 4.10 注意事项 不可用作滴眼。 4.11 三七总皂苷的不良反应 偶见咽喉干燥、头昏、心慌等现象,但停药后可恢复正常。 4.12 三七总皂苷的用法用量 1.静注:每次200~400mg,每天1次,以25%~50%葡萄糖注射剂40~60ml稀释后静脉缓推。 2.静脉滴注:每次200~400mg,每天1次,以10%葡萄糖注射剂250~500ml稀释后静脉滴注。10~15天为1个疗程。 3.肌注:每次100~200mg,每日1~2次。 4.13 药物相互作用 (尚不明确) 4.14 专家点评

5,什么是四甲基氨基化合物

有机化合物的命名命名是学习有机化学的"语言",因此,要求学习者必须掌握.有机合物的命名包括俗名,普通命名(习惯命名),系统命名等方法,要求能对常见有机化合物写出正确的名称或根据名称写出结构式或构型式.一,有机合物的命名方法1.俗名及缩写 有些化合物常根据它的来源而用俗名,要掌握一些常用俗名所代表的化合物的结构式,如:木醇是甲醇的俗称,酒精(乙醇),甘醇(乙二醇),甘油(丙三醇),石炭酸(苯酚),蚁酸(甲酸),水杨醛(邻羟基苯甲醛),肉桂醛(β-苯基丙烯醛),巴豆醛(2-丁烯醛),水杨酸(邻羟基苯甲酸),氯仿(三氯甲烷),草酸(乙二酸),苦味酸(2,4,6-三硝基苯酚),甘氨酸(α-氨基乙酸),丙氨酸(α-氨基丙酸),谷氨酸(α-氨基戊二酸),D-葡萄糖,D-果糖(用费歇尔投影式表示糖的开链结构)等.还有一些化合物常用它的缩写及商品名称,如:RNA(核糖核酸),DNA(脱氧核糖核酸),阿司匹林(乙酰水杨酸),煤酚皂或来苏儿(47%-53%的三种甲酚的肥皂水溶液),福尔马林(40%的甲醛水溶液),扑热息痛(对羟基乙酰苯胺),尼古丁(烟碱)等.2.普通命名(习惯命名)法 要求掌握"正,异,新","伯,仲,叔,季"等字头的含义及用法.正:代表直链烷烃;异:指碳链一端具有结构的烷烃;新:一般指碳链一端具有结构的烷烃.伯:只与一个碳相连的碳原子称伯碳原子.仲:与两个碳相连的碳原子称仲碳原子.叔:与三个碳相连的碳原子称叔碳原子.季:与四个碳相连的碳原子称季碳原子.如在下式中:C1和C5都是伯碳原子,C3是仲碳原子,C4是叔碳原子,C2是季碳原子.要掌握常见烃基的结构,如:烯丙基,丙烯基,正丙基,异丙基,异丁基,叔丁基,苄基等.例如:3.系统命名法 系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则.其中烃类的命名是基础,几何异构体,光学异构体和多官能团化合物的命名是难点,应引起重视.要牢记命名中所遵循的"次序规则".二,例题解析1.烷烃的命名 烷烃的命名是所有开链烃及其衍生物命名的基础.例1, 命名的步骤及原则:(1)选主链 选择最长的碳链为主链,有几条相同的碳链时,应选择含取代基多的碳链为主链.(2)编号 给主链编号时,从离取代基最近的一端开始.若有几种可能的情况,应使各取代基都有尽可能小的编号或取代基位次数之和最小.(3)书写名称 用阿拉伯数字表示取代基的位次,先写出取代基的位次及名称,再写烷烃的名称;有多个取代基时,简单的在前,复杂的在后,相同的取代基合并写出,用汉字数字表示相同取代基的个数;阿拉伯数字与汉字之间用半字线隔开.根据此原则,上面的化合物命名为:2,3,4,7-四甲基辛烷.2.几何异构体的命名 烯烃几何异构体的命名包括顺,反和Z,E两种方法.简单的化合物可以用顺反表示,也可以用Z,E表示.用顺反表示时,相同的原子或基团在双键碳原子同侧的为顺式,反之为反式.例2,如果双键碳原子上所连四个基团都不相同时,不能用顺反表示,只能用Z,E表示.按照"次序规则"比较两对基团的优先顺序,两个较优基团在双键碳原子同侧的为Z型,反之为E型.必须注意,顺,反和Z,E是两种不同的表示方法,不存在必然的内在联系.有的化合物可以用顺反表示,也可以用Z,E表示,顺式的不一定是Z型,反式的不一定是E型.例如:脂环化合物也存在顺反异构体,两个取代基在环平面的同侧为顺式,反之为反式.3,化合物的母体是环丁烷,在1,3位上有两个甲基分别在环平面的两侧,因此为反式异构体.命名为:反-1,3-二甲基环丁烷.3.光学异构体的命名 光学异构体的构型有两种表示方法D,L和R,S,D ,L标记法以甘油醛为标准,有一定的局限性,有些化合物很难确定它与甘油醛结构的对应关系,因此,更多的是应用R,S标记法,它是根据手性碳原子所连四个不同原子或基团在空间的排列顺序标记的.光学异构体一般用投影式表示,要掌握费歇尔投影式的投影原则及构型的判断方法.例4,根据投影式判断构型,首先要明确,在投影式中,横线所连基团向前,竖线所连基团向后;再根据"次序规则"排列手性碳原子所连四个基团的优先顺序,在上式中:-NH2 >-COOH >-CH2-CH3 >-H ;将最小基团氢原子作为以碳原子为中心的正四面体顶端,其余三个基团为正四面体底部三角形的角顶,从四面体底部向顶端方向看三个基团,从大到小,顺时针为R,逆时针为S .在上式中,从-NH2 -> -COOH -> -CH2-CH3为顺时针方向,因此投影式所代表的化合物为R构型,命名为R-2-氨基丁酸.4.双官能团和多官能团化合物的命名 双官能团和多官能团化合物的命名关键是确定母体.常见的有以下几种情况:① 当卤素和硝基与其它官能团并存时,把卤素和硝基作为取代基,其它官能团为母体.② 当双键与羟基,羰基,羧基并存时,不以烯烃为母体,而是以醇,醛,酮,羧酸为母体.③ 当羟基与羰基并存时,以醛,酮为母体.④ 当羰基与羧基并存时,以羧酸为母体.⑤ 当双键与三键并存时,应选择既含有双键又含有三键的最长碳链为主链,编号时给双键或三键以尽可能低的数字,如果双键与三键的位次数相同,则应给双键以最低编号.例5, 步骤及原则:(1)确定母体:对于硝基和卤素取代的烃类,一般以烃类为母体,把硝基和卤素作为取代基.因此,上面化合物应以甲苯为母体.(2)编号:从甲基开始,使取代基位次之和最小.(3)书写名称:不同取代基的排列顺序,按照次序规则,较优的基团写在后面.因此,化合物被命名为:2-硝基-3-氯甲苯.例6,步骤及原则:(1)确定母体 化合物中含有两个官能团,按照"次序规则",羧基优于羰基,应以羧酸为母体,羰基作为取代基.(2)编号 从羧基一端开始编号.(3)书写名称 化合物被命名为:4-甲基-5-羰基己酸.5.杂环化合物的命名 由于大部分杂环母核是由外文名称音译而来,所以,一般采用音译法.要注意取代基的编号,一般从杂原子开始沿着环编号,要使带有取代基的碳原子编号最小;也可将杂原子两边的杂原子依次编为a,b.例例7. 步骤及原则: (1)确定母体 化合物以吡咯为母体,羰基作为取代基.(2)编号 从氮原子开始编号.(3)书写名称 化合物被命名为:2-硝基吡咯或a-硝基吡咯.还有些东西建议你看一下:
季铵盐

6,怎样理解极性转换原则谢谢了大神帮忙啊

非极性分子和极性分子 一、教学目标 (1)知识目标 1、理解非极性键、极性键、非极性分子和极性分子的概念。 2、通过对简单的非极性分子、极性分子结构的分析、了解化学键的极性与分子极性的关系。 3、初步了解分子间的作用力的概念。 (2)能力目标 1、 培养学生抽象思维能力和空间想像能力 2、 培养学生的类比能力。 (3)德育目标 1、 透过现象看本质的辨证唯物观。 2、通过分子模型的观察与制作,体会化学中的对称美。 二、教学重点、难点、疑点 重点:非极性分子和极性分子 难点:分子结构与分子极性的关系 疑点:如何判断非极性分子和极性分子 三、教学设计与学法指导 (1)教学意图 本节课知识点较多,其中极性键和非极性键是共价键知识的加深,极性分子和非极性分子不仅和键的极性有关,还与分子的空间结构有关,内容很抽象。如果教师照本宣科,容易让学生觉得枯燥乏味,深奥难懂,为此,采取了实验导入→激疑→引导→探究→获得知识的教学模式。首先通过带电的塑料棒使细小的水流偏移而而不使CCl4细流偏移的奇妙的实验现象,激发学生的好奇心,使他们有一种去探究为什么的欲望,然后教师提出问题,过渡到极性分子和非极性分子的探讨。通过播放动画,展示模型,使学生对分子的极性有感性的认识。再采用对比的方法讨论分子极性与键的极性和结构的关系,使学生体会到化学学习的乐趣。及时进行练习,巩固知识。增加课外阅读,培养学生的兴趣。 (2)自主学习与探索引导 1、 课前自制分子模型 2、 观看动画以及分子模型,体会键的极性与分子极性的关系,自主看书并比较极性键和非极性键的异同。 (3)师生互动设计 1、 复习共价键的概念,引导学生由成键原子的结构分析得出键的极性。 2、 引导学生分析自制分子模型的特点。 3、 引导学生观看动画,分析键的极性与分子的极性的关系,并归纳列表比较二者的关系。 四、课前准备 (1)教师准备: 电脑、投影仪等;实验药品:蒸馏水、CCl4、I2;实验仪器:酸式滴定管、滴定管夹、铁架台、有机玻璃棒、绸布、烧杯等 (2)学生准备:自制分子结构模型 五、课时安排 1课时 六、教学过程 ************************************* 〖演示〗在酸式滴定管中分别加入CCl4 、H2O打开活塞,使液体成线状垂 直流下,把带电的玻璃棒靠近液流。 〖提问〗为什么现象不同呢?这就是我们这节课要解决的问题。 〖板书〗第五节 非极性分子和极性分子 〖过渡〗上节课我们学习了离子键和共价键,请写出下列物质的电子式 H2 HCl Na2O2 NaOH CCl4 〖设问〗 ①上述成键粒子的物质中所有原子都满足最外层8电子结构的有哪些? ② 比较H2 HCl 中的共价键有何不同(成键原子及共用电子对的位置) 〖讲授〗在HCl分子中,由于Cl原子吸引电子的能力比H原子强,共用电子对偏向于氯原子一方,而偏离H原子一方 ;在H2分子中,由于两个H原子吸引共用电子对的能力相同,因而共用电子对不偏向任何一方,由此引出极性键和非极性键。 〖板书〗一、极性键和非极性键 引导学生看书:P117 一、二自然段,并完成下表。 极性键 非极性键 概念 不同种元素、原子之间形成的共价键 同种元素的原子间形成的共价键 成键原子吸引电子对的能力 不同 相同 共用电子对位置 偏移 不偏移 本质 由于不同元素原子吸引电子的能力不同,共用电子对偏向吸引电子能力强的一方,因而吸引电子能力强的一方相对显负性 由于同种原子吸引电子的能力相同,成键原子不显电性 存在 共价化合物(如HCl.H20等),离子 化合物(如NaOH. NH4Cl等) 非金属单质(如N2,O2 等),某些 共价化合物(如Na2O2等) 判断标准 不同中元素原子之间形成的共价键 同种元素原子之间形成的共价键 〖课堂练习〗下列物质中含有极性共价键的有 D.E.G.H.IJ.K,含有非极性键共价键的有 A.F J A 单质碘 B氩气 C MgCl2 D NaOH E H2O F Na2O2 G H2O2 H NO L NH4Cl J C2H2(结构式为H C≡ C-H) K CO2 〖过渡〗对于由共价键形成的分子,我们可以根据其分子内部的电荷的分布是否均匀,极性分子和非极性分子两种。 〖板书〗二、极性分子和非极性分子 〖播放〗极性分子和非极性分子的flash动画 〖引导〗学生看书并完成下表: 极性分子 非极性分子 概念 整个分子结构不对称,电荷分布不均匀 整个分子结构对称排列,电荷分布均匀,对称 规律 ① 以极性键构成的分子,结构不对称 H2 HCl ②不同元素的双原子分子,如HCl, CO等 ③不同元素的多原子分子,如H2O,NH3,SO2,CH3Cl等 ①全部以非极性键组成的分子,如H2,N2等 ②全部以极性键组成的分子,但结构对称,如 CO2.CS2,CH4,BrF,等 ③单原子分子,因不存在共价键如 稀有气体单质 分子极性对物质物理性质的影响 ① 对熔沸点的影响:极性大,熔沸点一般要高一些 ② 对溶解度的影响,极性分子易溶于极性溶剂中,非极性分子易溶于非极性分子中(相似相溶) 键的极性与分子的极性的关系 分子有极性,键一定有极性,而键有极性,分子不一定有极性 〖课堂练习〗1、下列分子中,具有极性共价键的非极性分子的是( C ) A I2 B PH3(三角锥型) C CS2(直线型) D SO2 (两个S—O键的夹角是120 ) 2、在A、CO2 B、CaCl2 C、N2 D、NaOH E、H2O F、Na2O2 G、H2O2(非直线)中: (1) 属于极性分子的是 E,G (2 ) 具有极性键的非极性分子的是 A (3 ) 含有极性键的离子化合物的是 D 过渡:我们知道,在分子内相邻原子间存在强烈的相互作用,即化学键,那么,分子与分子之间因而存在着相互作用呢? 从NH3、Cl2 、CO2等降温增压能凝结车工内液态或固态的事实,可以证明分子之间也存在着相互作用,这种把分子聚集在一起的作用,叫分子间力,又叫范得华力。 三、分子间作用力 〖引导〗引导学生看书完成下表 概念 作用粒子 作用力大小 定义 化学键 相邻的两种或多种原子间强烈的相互作用 原子间 大 影响物质的化学性质和物理性质 分子间力 (范得华力) 把分子聚合在一起的作用力 分子间 小 影响物质的化学性质(熔沸点等)对于组成和结构相似的物质,分子量越大,分子间力越大,物质的熔沸点随之升高 七、课后活动 〖作业〗 课本习题二 〖课外阅读〗 分子极性在天然药物化学研究中的应用 天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门科学,内容涉及天然药物的化学成分、结构特征、理化性质和提取、分离、检识以及中草药制剂的成分分析等。其研究过程中运用到许多基本的化学原理,分子极性方面的应用在研究中涉及比较多而且非常重要。 分子极性是分子的一种物理性质,分子根据结构不同分为极性分子和非极性分子,分子极性的强弱由分子的结构决定并可用偶极矩和介电常数来比较。 1、分子极性在药物提取中的应用 溶剂提取法是中草药有效成分提取最常用最重要的方法,它是根据中草药中各种化学成分的溶解性,选用适当的溶剂将有效成分从药材组织中尽可能溶解出来的方法。影响提取效率的因素很多,但分子极性是其中非常重要的因素。 1.1分子极性是划分溶剂类型的依据 常用溶剂分为极性溶剂和非极性溶剂或亲水性溶剂和亲脂性溶剂,物质的极性常以介电常数表示。介电常数大,极性强,亲水性强;介电常数小,极性弱,亲脂性强。通常溶剂的极性和它们的亲脂性与亲水性是一致的. 1.2分子极性是选择溶剂的关键依据 要做到最大限度地将有效成分从药材中提取出来,须遵循“相似相溶”的原理。分子极性越强,亲水性越强,亲脂性越弱;分子极性越弱,亲水性越弱,亲脂性越强。因此乙醇是应用范围最广的一种溶剂。但是,中草药化学成分复杂,难以做到用偶极矩和介电常数来比较每一个分子的极数,更多的情况下是从分子的结构出发去判断和比较有效成分的极性: 2、分子极性在药物分离中的应用 药物分离常采用萃取法、沉淀法、结晶法、层析法等,分子极性在这些过程中起着决定性作用。 2.1 利用溶解度不同进行分离 在水提取液中加入有机溶剂,会减小溶剂的极性,使水提取液中的水溶性成分(淀粉、树胶、粘液质、蛋白质)从溶剂中析出;将食盐加入粗皂甙水提取液中至饱和,会增强溶剂的极性,降低皂甙在水中的溶解度,再用正丁醇反复萃取,可得到较纯的皂甙;又如将具有酸碱性的药物进行转换,即药物(亲脂性)〖CDS2〗相应的盐(亲水性)可以进行药物的分离和提纯,生物碱、羟基蒽醌等药物的分离就是采用这种方法向水提取液中加入石油醚等极性小的溶剂可以除去油脂等杂质。 2.2分子极性不同是层析法分离药物 在吸附柱层析、纸层析、薄层层析等层析法中,药物的分离取决于各成分在固定相中的迁移速度。极性大的化合物被牢固吸附,迁移慢;极性小的化合物被吸附弱,迁移快。 总之正确理解了分子极性的有关知识,对天然药物化学研究领域有重要作用。

7,非极性分子有什么性质

极性分子和极性分子 一、教学目标 (1)知识目标 1、理解非极性键、极性键、非极性分子和极性分子的概念。2、通过对简单的非极性分子、极性分子结构的分析、了解化学键的极性与分子极性的关系。3、初步了解分子间的作用力的概念。(2)能力目标 1、 培养学生抽象思维能力和空间想像能力 2、 培养学生的类比能力。 (3)德育目标 1、 透过现象看本质的辨证唯物观。 2、通过分子模型的观察与制作,体会化学中的对称美。 二、教学重点、难点、疑点 重点:非极性分子和极性分子难点:分子结构与分子极性的关系疑点:如何判断非极性分子和极性分子三、教学设计与学法指导 (1)教学意图 本节课知识点较多,其中极性键和非极性键是共价键知识的加深,极性分子和非极性分子不仅和键的极性有关,还与分子的空间结构有关,内容很抽象。如果教师照本宣科,容易让学生觉得枯燥乏味,深奥难懂,为此,采取了实验导入→激疑→引导→探究→获得知识的教学模式。首先通过带电的塑料棒使细小的水流偏移而而不使CCl4细流偏移的奇妙的实验现象,激发学生的好奇心,使他们有一种去探究为什么的欲望,然后教师提出问题,过渡到极性分子和非极性分子的探讨。通过播放动画,展示模型,使学生对分子的极性有感性的认识。再采用对比的方法讨论分子极性与键的极性和结构的关系,使学生体会到化学学习的乐趣。及时进行练习,巩固知识。增加课外阅读,培养学生的兴趣。(2)自主学习与探索引导1、 课前自制分子模型2、 观看动画以及分子模型,体会键的极性与分子极性的关系,自主看书并比较极性键和非极性键的异同。(3)师生互动设计1、 复习共价键的概念,引导学生由成键原子的结构分析得出键的极性。2、 引导学生分析自制分子模型的特点。3、 引导学生观看动画,分析键的极性与分子的极性的关系,并归纳列表比较二者的关系。四、课前准备 (1)教师准备: 电脑、投影仪等;实验药品:蒸馏水、CCl4、I2;实验仪器:酸式滴定管、滴定管夹、铁架台、有机玻璃棒、绸布、烧杯等 (2)学生准备:自制分子结构模型 五、课时安排 1课时 六、教学过程 ************************************* 〖演示〗在酸式滴定管中分别加入CCl4 、H2O打开活塞,使液体成线状垂 直流下,把带电的玻璃棒靠近液流。〖提问〗为什么现象不同呢?这就是我们这节课要解决的问题。〖板书〗第五节 非极性分子和极性分子 〖过渡〗上节课我们学习了离子键和共价键,请写出下列物质的电子式 H2 HCl Na2O2 NaOH CCl4 〖设问〗 ①上述成键粒子的物质中所有原子都满足最外层8电子结构的有哪些? ② 比较H2 HCl 中的共价键有何不同(成键原子及共用电子对的位置)〖讲授〗在HCl分子中,由于Cl原子吸引电子的能力比H原子强,共用电子对偏向于氯原子一方,而偏离H原子一方 ;在H2分子中,由于两个H原子吸引共用电子对的能力相同,因而共用电子对不偏向任何一方,由此引出极性键和非极性键。〖板书〗一、极性键和非极性键 引导学生看书:P117 一、二自然段,并完成下表。 极性键 非极性键 概念 不同种元素、原子之间形成的共价键 同种元素的原子间形成的共价键 成键原子吸引电子对的能力 不同 相同 共用电子对位置 偏移 不偏移 本质 由于不同元素原子吸引电子的能力不同,共用电子对偏向吸引电子能力强的一方,因而吸引电子能力强的一方相对显负性 由于同种原子吸引电子的能力相同,成键原子不显电性 存在 共价化合物(如HCl.H20等),离子 化合物(如NaOH. NH4Cl等) 非金属单质(如N2,O2 等),某些 共价化合物(如Na2O2等) 判断标准 不同中元素原子之间形成的共价键 同种元素原子之间形成的共价键 〖课堂练习〗下列物质中含有极性共价键的有 D.E.G.H.IJ.K,含有非极性键共价键的有 A.F J A 单质碘 B氩气 C MgCl2 D NaOH E H2O F Na2O2 G H2O2 H NO L NH4Cl J C2H2(结构式为H C≡ C-H) K CO2 〖过渡〗对于由共价键形成的分子,我们可以根据其分子内部的电荷的分布是否均匀,极性分子和非极性分子两种。 〖板书〗二、极性分子和非极性分子 〖播放〗极性分子和非极性分子的flash动画 〖引导〗学生看书并完成下表: 极性分子 非极性分子 概念 整个分子结构不对称,电荷分布不均匀 整个分子结构对称排列,电荷分布均匀,对称 规律 ① 以极性键构成的分子,结构不对称 H2 HCl ②不同元素的双原子分子,如HCl, CO等 ③不同元素的多原子分子,如H2O,NH3,SO2,CH3Cl等 ①全部以非极性键组成的分子,如H2,N2等 ②全部以极性键组成的分子,但结构对称,如 CO2.CS2,CH4,BrF,等 ③单原子分子,因不存在共价键如 稀有气体单质 分子极性对物质物理性质的影响 ① 对熔沸点的影响:极性大,熔沸点一般要高一些 ② 对溶解度的影响,极性分子易溶于极性溶剂中,非极性分子易溶于非极性分子中(相似相溶) 键的极性与分子的极性的关系 分子有极性,键一定有极性,而键有极性,分子不一定有极性 〖课堂练习〗1、下列分子中,具有极性共价键的非极性分子的是( C ) A I2 B PH3(三角锥型) C CS2(直线型) D SO2 (两个S—O键的夹角是120 ) 2、在A、CO2 B、CaCl2 C、N2 D、NaOH E、H2O F、Na2O2 G、H2O2(非直线)中: (1) 属于极性分子的是 E,G (2 ) 具有极性键的非极性分子的是 A (3 ) 含有极性键的离子化合物的是 D 过渡:我们知道,在分子内相邻原子间存在强烈的相互作用,即化学键,那么,分子与分子之间因而存在着相互作用呢? 从NH3、Cl2 、CO2等降温增压能凝结车工内液态或固态的事实,可以证明分子之间也存在着相互作用,这种把分子聚集在一起的作用,叫分子间力,又叫范得华力。三、分子间作用力 〖引导〗引导学生看书完成下表 概念 作用粒子 作用力大小 定义 化学键 相邻的两种或多种原子间强烈的相互作用 原子间 大 影响物质的化学性质和物理性质 分子间力(范得华力) 把分子聚合在一起的作用力 分子间 小 影响物质的化学性质(熔沸点等)对于组成和结构相似的物质,分子量越大,分子间力越大,物质的熔沸点随之升高 七、课后活动 〖作业〗 课本习题二〖课外阅读〗 分子极性在天然药物化学研究中的应用 天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门科学,内容涉及天然药物的化学成分、结构特征、理化性质和提取、分离、检识以及中草药制剂的成分分析等。其研究过程中运用到许多基本的化学原理,分子极性方面的应用在研究中涉及比较多而且非常重要。 分子极性是分子的一种物理性质,分子根据结构不同分为极性分子和非极性分子,分子极性的强弱由分子的结构决定并可用偶极矩和介电常数来比较。 1、分子极性在药物提取中的应用 溶剂提取法是中草药有效成分提取最常用最重要的方法,它是根据中草药中各种化学成分的溶解性,选用适当的溶剂将有效成分从药材组织中尽可能溶解出来的方法。影响提取效率的因素很多,但分子极性是其中非常重要的因素。 1.1分子极性是划分溶剂类型的依据 常用溶剂分为极性溶剂和非极性溶剂或亲水性溶剂和亲脂性溶剂,物质的极性常以介电常数表示。介电常数大,极性强,亲水性强;介电常数小,极性弱,亲脂性强。通常溶剂的极性和它们的亲脂性与亲水性是一致的. 1.2分子极性是选择溶剂的关键依据 要做到最大限度地将有效成分从药材中提取出来,须遵循“相似相溶”的原理。分子极性越强,亲水性越强,亲脂性越弱;分子极性越弱,亲水性越弱,亲脂性越强。因此乙醇是应用范围最广的一种溶剂。但是,中草药化学成分复杂,难以做到用偶极矩和介电常数来比较每一个分子的极数,更多的情况下是从分子的结构出发去判断和比较有效成分的极性: 2、分子极性在药物分离中的应用 药物分离常采用萃取法、沉淀法、结晶法、层析法等,分子极性在这些过程中起着决定性作用。 2.1 利用溶解度不同进行分离 在水提取液中加入有机溶剂,会减小溶剂的极性,使水提取液中的水溶性成分(淀粉、树胶、粘液质、蛋白质)从溶剂中析出;将食盐加入粗皂甙水提取液中至饱和,会增强溶剂的极性,降低皂甙在水中的溶解度,再用正丁醇反复萃取,可得到较纯的皂甙;又如将具有酸碱性的药物进行转换,即药物(亲脂性)〖CDS2〗相应的盐(亲水性)可以进行药物的分离和提纯,生物碱、羟基蒽醌等药物的分离就是采用这种方法向水提取液中加入石油醚等极性小的溶剂可以除去油脂等杂质。 2.2分子极性不同是层析法分离药物 在吸附柱层析、纸层析、薄层层析等层析法中,药物的分离取决于各成分在固定相中的迁移速度。极性大的化合物被牢固吸附,迁移慢;极性小的化合物被吸附弱,迁移快。 总之正确理解了分子极性的有关知识,对天然药物化学研究领域有重要作用。
如果分子中的键都是非极性的,共用电子对不偏向任何一个原子,从整个分子看,分子里电荷分布是对称的,这样的分子叫做非极性分子。
不易溶于极性溶剂(如水),易溶于有机溶剂等非极性溶剂。

8,强心苷有几种结构如何检识区别

中化学成分的预试验系统预试法——应用一些简单的定性试验,对中中所含各类化学成分作全面检查。单项预试法——根据需要,有重点的检查某类成分或某效成分。方法:试管反应+薄层层析检查中草主要来源于植物。植物的化学成分较复杂,有些成分是植物所共有的,如纤维素、蛋白质、油脂、淀粉、糖类、色素等。有些成分仅是某些植物所特有的,如生物碱类、甙类、挥发油、有机酸、鞣质等。 各类化学成分均具有一定的特性,一般可由材的外观、色、嗅、味等作为初步检查判断的手段之一。如材样品折断后,断面不油点或挤压后有油迹者,多含油脂或挥发油;有粉层的多含淀粉、糖类;嗅之有特殊气味者,大多含有挥发油、香豆精、内酯;有甜奈者多含糖类;味若者大多含生物碱、甙类、苦味质;味酸者含有有机酸;味涩者多含有鞣质等等。 中草所含化学成分均为多类的混合物,分析时常常互相干扰,不易得到正确结果。因此需根据中草所含各种化学成分的溶解度、酸碱度、极性等理化性质,再用各类成分的鉴别反应加以鉴别。 一、 预试溶液的制备1、 水提取液——糖、多糖、有机酸、皂苷、酚类、鞣质、氨基酸、多肽、蛋白质……2、 乙醇提取液——酚类、鞣质、有机酸、香豆素、强心苷、黄酮、蒽醌、甾体……3、 5%HCl-乙醇提取液——生物碱4、 石油醚提取液——甾体、萜类、油……(一)鉴别注意事项 1.根据各灰成分不同性质,选用适宜的溶剂提取,以保证等成分能被提取出来。 2.检品提取液的浓度应足以达到各该反应的灵敏度。 3.检品提取液的酸碱度(pH)值应不致影响鉴别反应中所需要的pH值。相差甚大时应事先调节。 4.提取液较深时,常易影响观察鉴别反应的效果,此时可适当稀释,或进一步提纯。 5.鉴别反应时应注意防止多类成分的相互干扰,以免出现假阳性,或颜色不正等情况。最好在化学鉴别的同时,做空白试验和对照试验(用已知含某类成分的中草或纯品做阳性对照)。 6.在鉴别试验中,如果某一类成分的几个鉴别反应结果不一致时(即有的呈阳性反应,有的呈阴性)则应进行全面分析。首先应注意呈阳性反应的试验是否属于该类成分的专一反应,否则应检查其他类成分能否产生该反应,从多方面加以判断。但也应注意,某些反应只能对某一类成分中的某个化学基团呈性反应,如检查黄酮类的盐酸――镁粉试验,它只对黄酮类中的羟基黄酮类(黄酮醇类)反应明显,其余类的黄酮类则不甚明显,但也不能轻易否定不是黄酮类,为了避免孤立和片面的下结论,一定要全面考虑综合分析。 中草化学成分一般鉴别试验屯只是一个初步判断,最后确证尚需进一步提纯,以鉴定后才能予以肯定。(二)鉴别方法 1、 氨基酸、多肽、蛋白质(1)加热沉淀试验:加热煮沸 →混浊或沉淀 (蛋白质)+5%H2SO4(不加热)→混浊或沉淀(2)双缩脲反应:+40%NaOH,1%CuSO4 →紫色、红色或紫红色(多肽、蛋白质)(3)茚三酮反应:+0.2%茚三酮试液 →蓝或蓝紫色(氨基酸、多肽、蛋白质)(4)吲哚醌反应:+吲哚醌试液 →各种颜色(氨基酸)(5)Millon反应:+Hg,H2NO2 →红色(蛋白质分子中有酪氨酸组成)(6)Hopkins-Cole反应:+乙醛酸,浓硫酸 →各色(蛋白质分子中有色氨酸组成)(7)氨基酸的薄层层析检查:吸附剂——硅胶G展开剂—— n-BuOH,n-BuOH:HAc:H2O显色剂——0.25%茚三酮试液 →紫红色斑点(1)加热或矿酸试验:取检品的水溶液1ml于试管中,加热至沸或加5%盐酸,如发生混浊或有沉淀示含有水溶性蛋白质。 (2)缩二脲试验:取检品的水溶液1ml,加10%氧化钠溶液2滴,充分摇匀,逐渐加入硫酸铜试液,随加摇匀,注意观察,如呈现紫色或紫红色示可能含有蛋白质和氨基酸。 凡蛋白质结构中含有两个或两个以上肽键(-CONH-)者均有此反应,能在碱性溶液中与Cu2+生成仙络合物,呈现一系列的颜色反应,二肽呈蓝色,三肽呈紫色,加肽以上呈红色,肽键越多颜色越红。 (3)茚三酮试验,取检品的水溶液1ml,加入茚三酮试液2-3滴,加热煮沸4-5分钟,待其冷却,呈现红色棕色或蓝紫色(蛋白质、胨类、肽类及氨基酸)。 氨基酸与茚三酮的水合作物作用,氨其酸氧化成醛、氨和二氧化碳,而茚三酮被还原成仲醇,与所后成的氨及另一分子茚三酮缩合生成有蓝紫色的化合物。 【注】①茚三酮试剂主要是多肽和氨基酸的显色剂,反应在1小时内稳定。试剂溶液pH值以5-7为宜,必要时可加吡啶数滴或醋酸钠调整。 ②此反应非常灵敏,但有个别氨基酸不能呈紫色,而呈黄色,如脯氨酸。 (4)氨基酸薄层层析检出反应: ①吸附剂:硅胶G。 ②展开剂:(1)正丁醇:水(1:1)(2)正丁醇:醋酸:水(4:1:5) ③显色剂:0.5%茚三酮丙酮溶液,喷雾后于1100烘箱放置5分钟,显蓝紫允或紫色。 2、 皂苷(1)泡末试验:振摇 →大量持续性泡末+0.1M HCl 二管泡末高度相同(三萜皂苷)+0.1M NaOH 碱管高于酸管(甾体皂苷)(2)溶血试验:+2%红血球悬浮液 →溶血(3)Lieberman—Burchard反应:+醋酐-浓硫酸—— 紫红色(三萜皂苷)黄-红-紫-污绿(甾体皂苷)(1)泡沫试验:取检品的水溶液2ml于带塞试管中,用力振摇3分钟,即产生持久性蜂窝状泡沫(维持10分钟以上),且泡沫量不少于液体体积的1/3。 【注】常用的增溶剂吐温、司盘,振摇时均能产生持久性泡沫,要注意区别。 (2)溶血试验:取试管4支,分别加入滤液0.25、0.5、0.75 ml,然后依次分别加入生理盐水2.25、2.0、1.75、1.5 ml,使每一个试管中的溶液都成为2.5ml, 再将各试管加入2%的血细胞悬液2.5ml,振摇均匀后,同置于370水浴或25-270的室温中注意观察溶血情况,一般观察3小时即可,或先滴红细胞于显微镜下,然后滴加检液看血细胞是否消失。如有溶血现象示正反应。 【注】①鞣质对血红细胞有凝集作用,干扰溶血试验的观察,应事先除去(可用取胜酰胺粉吸附或用明胶沉淀)。 ②检液应为中性溶液。 (3)醋酐浓硫酸试验(Liebrmann Burchard反应)取检品的水溶液置蒸发皿中,于水浴上蒸干,残渣加入少量冰醋酸使溶解,再加入醋酐浓硫酸(19:1)试液,呈现红紫色并变成污色绿色(甾类、三萜类成分或皂甙) (4)区别甾体皂甙和三萜皂甙:取带塞试管两支,各盛检品的水溶解1 ml,1支加0.1N盐酸溶液2ml,另一支加0.1N氢氧化钠溶液2ml用力振摇1分钟(需左右手交替振摇各半分钟),观察两管泡沫的多少,若两管泡沫体积相同或酸管多,示含三萜式皂甙;若加碱管泡沫多于加酸管示含甾示含甾体皂甙。 三萜皂甙为酸性皂甙在酸性水溶液中形成较稳定的泡沫;甾体皂甙为中性皂甙在碱笥溶液中能形成较稳定的泡沫。 浓硫酸、高氯酸、高氯酸-香草醛、浓硫酸-香草醛等的显色原理主要是使羧基脱水,增加双键结构,再经双键位移,双分子缩合等反应生成共轭双键系统,又在酸作用下形成阳碳离子盐而显色 3、 糖和苷(1)斐林试剂:+硫酸铜、酒石酸钾钠 —— 砖红色沉淀(还原糖)(—)+1%HCl +NaOH 沉淀(苷元)△30min 上清液(+)(多糖、苷)(2)Molish反应:+α-萘酚-浓硫酸 →紫红色环(3)银镜反应:+0.1N硝酸银、5N氨水 →银褐色(还原糖)(4)薄层层析检查::吸附剂——硅胶G或纤维素展开剂—— n-BuOH:Pd:H2O;15%HAc显色剂—— 苯胺-邻苯二甲酸(1)碱性酒石酸铜试液:取检品的水溶液1-2ml(如为醇溶液须将醇蒸发除去),加入碱笥酒石酸铜试液1ml,于沸水浴上加热5分钟,产生棕红色或砖红色氧化亚铜沉淀,示有还原糖。 还原糖能使二价铜盐(蓝色)还原成氧化亚铜,醛糖的醛基氧化成羧基: 【注】①如检液呈酸性,应先碱化。 ②此反应所产生的沉淀由于条件不同,其颜色也不同,质点上的呈黄色,质点大的呈红色。有保持性胶体存在时,也常产生黄色沉淀。 ③职样品中含有其他醛、酮及还原较强的其他成分,或中划制剂中附加的抗氧剂、;葡萄糖等均可显阳性反应。 (2)α萘酚试验(Molisch紫环反应):取检品的水溶液1ml,加5%萘酚试液数滴振摇后,沿管壁滴入5-6滴浓硫酸,使成两液层,待2-3分钟后,两层液面出现紫红色环(糖、多糖或甙类)。 多糖类遇浓硫酸被水解成单糖,单糖被浓硫酸脱水闭环,形成糠醛类化合物,在浓硫酸存在下与α萘酚发生酚醛缩合反应,生成紫红色缩合物。 【注】①甙的分子结构中含有糖基,一般属于单糖类,如葡萄糖,鼠李糖、半乳糖,但也有含二分子糖(双糖)或多分子糖(多糖)。在上述反应条件下,甙被水解成单糖,因此甙萘酚试验,系分子中糖部分的反应。 ②由于此反应较为灵敏,如有微量滤纸纤维或中草粉末存在于溶液中,都能产生上述反应。故滤过时应加注意。 (3)多糖的确证试验:取检品的水溶液5ml于水蒸发至干,加入1ml蒸馏水,再加入乙醇5ml,如出现沉淀,滤过收集后用少量热乙醇洗涤,再将沉淀物溶于3ml蒸馏水中,做下例试验。 ①碘试验:取检品的不溶液1ml,加碘试液1滴,观察颜色变化,如呈蓝黑色为地衣糖;紫黑色为糊精;蓝色加热消失,冷后蓝色再现为淀粉。 ②多糖水解:取检品的水溶液1ml,加入稀盐酸5滴,置沸水浴中加热10-15分钟,然后用10%氢氧化钠液中和至中性,再加新配制的碱性酒石酸铜试淮4滴,另取检液1ml,不加酸水解直接加入上述试液4滴,两管同置水浴上煮沸5-6分钟。如果水解后生成棕红色常常物的量比未经水解的多,则示有多糖。 多糖水解后产生单糖,利用单糖的还原性,使铜离子还原成氧化亚铜。 4、 酚类和鞣质(1)FeCl3试剂:+1%FeCl3试液 →蓝、暗绿或蓝紫色(2)三氯化铁-铁氰化钾试剂:喷洒→蓝色斑点(3)香草醛-盐酸试剂:喷洒 →红色(间苯二酚、间苯三酚)(4)重氮盐试剂:+对硝基苯胺、亚硝酸钠 →红色(5)薄层层析检查:吸附剂——硅胶G或纤维素展开剂—— n-BuOH:HAc:H2O;15%HAc显色剂——1% FeCl3试液1%三氯化铁-1%铁氰化钾试液 →蓝、绿或黑色鞣质与酚类的区别:+明胶 —— 沉淀上清液 +1%FeCl3试液 →蓝、暗绿或蓝紫色(1)三氯化铁试验:取检品的水溶液1ml,加三氯化铁试液1-2滴,呈现绿色、污绿色、蓝黑色或暗紫色(可水解鞣质显蓝一蓝黑色,缩合鞣显绿色一污绿色)。 鞣质均是多羟基酚的衍生物,即多元酚,能和三价铁离子发生颜色反应生成复杂的络盐。 【注】此反应如遇有矿酸或有机酸、醋酸盐等存在,能阻碍颜色的生成。硝基酚类对三氯化铁试剂无明显反应。 (2)明胶试验:取检品的水溶液1ml,加氯化钠明溶液2-3滴,即生成白色沉淀物。 鞣质有凝固蛋白的性能。 (3)溴试验:取检品的水溶液1ml,加溴试液1-2滴,生成白色或沉淀物,示可能含有酚或儿茶酚鞣质。 【注】过多的溴会阻碍鞣质的沉淀,因此溴水不宜多加。 (4)香草醛一酸试验:取检品的水溶液点于滤纸片上,干后,喷雾或滴加香草醛一盐酸试液,呈现红色斑点(多元酚类物质)。 (5)鞣质、酚类薄层层析检出反应: ①吸附剂:聚酰胺;硅胶;硅胶;石膏:水(5:1:7)调成状,涂成薄板,1050烘干45分钟。 ②展开剂:乙醇:醋酸(100:2);正丁醇:乙酸乙酯:水(5:4:1);苯:甲醇(95:5)。 ③显色剂:10%三氯化铁溶液;1%三氯化铁乙醇溶液与1%铁氰化钾水溶液(1:1)显蓝一紫色斑点。 5.黄酮及其甙类 (1)盐酸-镁粉反应:+HCl-Mg →红色(2)三氯化铝反应:+AlCl3 →黄色(3)浓氨水反应:+NH3 →亮黄或橙色(4)薄层层析检查:吸附剂——聚酰胺或硅胶G (1)盐酸一镁(或锌)粉试验:取检品的乙醇溶液1ml,加放少量镁粉(或锌粉),然后加浓盐酸4-5滴,置沸水浴中加热2-3分钟,如出现红色示有游离黄酮类或黄酮甙(以同法不加镁或粉做一对照,如两管都显红色则有花色素存在。如继续加碳酸试液使成碱笥即变成紫色双转变为蓝色,即证明含花色素)。 黄酮类的乙醇溶液,在盐酸存在的情况下,能被镁粉还原,生成花色甙元而呈现红色或紫色反应(个别为淡黄色、橙色、紫色或蓝色)。这是由于酮类化合物分子中含有一个碱性氧原子,致能溶于稀酸中被还原成带四价的氧原子即锌盐。本法是鉴别黄酮类的一个反应。但花色素本身在酸性下(不需加镁粉)呈红色,应加以区别。 【注】①此反庆仅在化学结构中,第三位上带羟基的酮醇类显色较明显,而其它黄酮烷酮类均不甚明显。因此试验呈阴性反庆是不能做出否定的结论,尚需结合其他实验再做结论。 ②试验应在醇中进行,水分多会影响颜色的生成。此反庆较慢,有时需置水浴上加热,以促使反应的进行。 (2)荧光试验: ①三氯化铝试验:取检品的乙醇溶液点于滤纸片上(干后再点1次,使其浓度庥中),干后,喷雾1%三氯化铝乙醇试液,在紫外光灯下观察,呈现黄色、绿色、橙色等荧光为黄酮类;呈现天蓝色或黄绿色;荧光,则为二氢黄酮类。这是区别二氢黄酮类化合物的一种鉴别反应。 ②硼酸丙酮枸橼酸丙酮试验:取检品的乙醇溶液1ml,在沸水浴上蒸干加入饱和硼酸丙酮溶液及10%枸橼酸丙酮溶液各0.5ml,蒸去丙酮后,在紫外光灯下观察,管内呈现强烈的绿色荧光(黄酮或其甙类)。 (3)碱液试验:取检品的乙醇溶液点于滤纸片上(干后,再点一次,使其溶液集中),干后,喷1%碳酸钠溶液或在氨蒸气中熏几分钟,呈现亮黄、绿或橙黄色。如将氨气熏过的滤纸露置空气中,颜色逐渐裉去而变为原有的颜色(黄酮或其甙类)。5、 生物碱(1)沉淀反应——碘化汞钾试剂 →白色或浅黄色沉淀碘化铋钾试剂 →橘红色沉淀碘—碘化钾试剂 →浅棕或暗棕色沉淀硅钨酸试剂 →浅黄或黄棕色沉淀磷钨酸试剂 →浅黄色沉淀磷钼酸试剂 →白色或淡黄色沉淀苦味酸试剂 →黄色结晶或非结晶形沉淀鞣酸试剂 →棕黄色沉淀氯化金试剂 →黄色结晶氯化铂试剂 →白色结晶雷氏铵盐 →红色无定形沉淀(2)薄层层析检查:吸附剂——碱性氧化铝(Ⅲ级,干法铺板)硅胶G(稀碱湿法铺板)展开剂——氯仿:甲醇显色——UV;碘化铋钾6、 有机酸(1)PH试纸检查(2)溴酚兰试液:喷洒→蓝色背景黄色斑点(3)薄层层析检查:吸附剂——硅胶G或酸性氧化铝展开剂—— C6H6:EtOH显色剂——0.1%溴酚兰试液→黄色7、甾体(1)Lieberman—Burchard反应:+醋酐-浓硫酸 →黄-红-紫-污绿(2)氯仿-浓硫酸反应:+氯仿-浓硫酸 氯仿层→红或青色硫酸层→绿色荧光(3)五氯化锑或三氯化锑反应:+SbCl3或SbCl5 →红色(4)薄层层析检查:吸附剂——中性氧化铝或硅胶G 展开剂—— C6H6-MeOH;CHCl3-MeOH显色剂—— 10%磷钼酸 →蓝-蓝紫色5%三氯化锑试液 →红、棕红或绿色9、香豆素、内酯(1)开闭环反应:+1%NaOH→澄清 +2%HCl→混浊(2)异羟污酸铁反应:+7%盐酸羟胺、10%KOH △ +稀HCl、1%FeCl3 →红色(3)重氮盐试剂:+对硝基苯胺、亚硝酸钠 →红色(4)薄层层析检查:吸附剂——酸性硅胶G或硅胶G 或酸性氧化铝展开剂—— 甲苯-乙酸乙酯-甲酸(5:4:1)显色剂—— UV→蓝色荧光异羟污酸铁试液 →红色10、强心苷(1)Kedde试剂:+3,5-二硝基苯甲酸试液 →紫红色(2)Baljet试剂:+碱性苦味酸试液 →橙或橙红色(3)Legal试剂:+亚硝酰铁氰化钠试液 →紫红色(4)K-K反应:+FeCl3/冰HAc、浓H2SO4→ 上层绿~蓝色 (2-去氧糖)界面红棕色(5)薄层层析检查:吸附剂——硅胶G 或中性氧化铝展开剂—— n-BuOH:HAc:H2O(4:1:5)显色剂—— 碱性3,5-二硝基苯甲酸试液→紫红色碱性苦味酸试液 →橙红色11、蒽醌(1)碱液反应:+10%NaOH →红色 +H2O2 →红色不褪 +H+ →红色褪去(2)醋酸镁反应:+1%MgAc2 →红色(3)薄层层析检查:吸附剂——硅胶G展开剂——Pet:EtOAc显色剂—— UV→黄色荧光5%NaOH →红色12、挥发油、油脂(1)油斑检查:油斑挥发 →挥发油; 油斑不消失→油脂或类脂(2)磷钼酸反应:喷洒5%磷钼酸试液 →蓝色(油脂、三萜、甾醇)最后重点提醒:以上各试剂的配制方法最好参照典来配制,原因一是上面写得很详细,二是典中有个规定,典上配制的溶液要是要用到乙醇的,如果没有指定用无水乙醇,一般是要用95%的乙醇的。另外附一个试剂的配法:氯化钠明胶试剂:(两者都是固体,刚开始我还真不知道怎样配,后来在典才发现)2g氯化钠和1g明胶,再加上100g水,要求是现配的!
我不会~~~但还是要微笑~~~:)
我不会~~~但还是要微笑~~~:)

9,什么叫有机物和无机物

与机体有关的化合物(少数与机体有关的化合物是无机化合物,如水),通常指含碳元素的化合物,但一些简单的含碳化合物,如一氧化碳、二氧化碳、碳酸盐、金属碳化物、氰化物等除外。除含碳元素外,绝大多数有机化合物分子中含有氢元素,有些还含氧、氮、卤素 、硫和磷等元素。已知的有机化合物近600万种。早期,有机化合物系指由动植物有机体内取得的物质 。自1828年人工合成尿素【(NH2)2CO】后,有机物和无机物之间的界线随之消失,但由于历史和习惯的原因,“有机”这个名词仍沿用。有机化合物对人类具有重要意义,地球上所有的生命形式 ,主要是由有机物组成的。例如:脂肪、氨基酸、蛋白质、糖、血红素、叶绿素、酶、激素等。生物体内的新陈代谢和生物的遗传现象,都涉及到有机化合物的转变。此外,许多与人类生活有密切关系的物质,例如石油、天然气、棉花、染料、化纤、天然和合成药物等,均属有机化合物。   有机化合物主要由氧元素、氢元素、碳元素组成。有机物是生命产生的物质基础。 其特点主要有:   多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。 和无机物相比,有机物数目众多,可达几百万种。有机化合物的碳原子的结合能力非常强,互相可以结合成碳链或碳环。碳原子数量可以是1、2个,也可以是几千、几万个,许多有机高分子化合物甚至可以有几十万个碳原子。此外,有机化合物中同分异构现象非常普遍,这也是造成有机化合物众多的原因之一。 有机化合物除少数以外,一般都能燃烧。和无机物相比,它们的热稳定性比较差,电解质受热容易分解。有机物的熔点较低,一般不超过400℃。有机物的极性很弱,因此大多不溶于水。有机物之间的反应,大多是分子间反应,往往需要一定的活化能,因此反应缓慢,往往需要催化剂等手段。而且有机物的反应比较复杂,在同样条件下,一个化合物往往可以同时进行几个不同的反应,生成不同的产物。    定义:   有机物通常指含碳元素的化合物,或碳氢化合物及其衍生物总称为有机物。   说明 :   1.有机物是有机化合物的简称。目前人类已知的有机物达900多万种,数量远远超过无机物。   2.早先,人们已知的有机物都从动植物等有机体中取得,所以把这类化合物叫做有机物。到19世纪20年代,科学家先后用无机物人工合成许多有机物,如尿素、醋酸、脂肪等等,从而打破有机物只能从有机体中取得的观念。但是,由于历史和习惯的原因,人们仍然沿用有机物这个名称。   3.有机物一般难溶于水,易溶于有机溶剂,熔点较低。绝大多数有机物受热容易分解、容易燃烧。有机物的反应一般比较缓慢,并常伴有副反应发生。   4.有机物种类繁多,可分为烃和烃的衍生物两大类。根据有机物分子中所含官能团的不同,又分为烷、烯、炔、芳香烃和醇、醛、羧酸、酯等等。根据有机物分子的碳架结构,还可分成开链化合物、碳环化合物和杂环化合物三类。   5.有机物对人类的生命、生活、生产有极重要的意义。地球上所有的生命体中都含有大量有机物。 [编辑本段]食品中的有机化合物:   1.人体所需的营养物质:糖类(淀粉)、脂肪、蛋白质、维生素、矿物质   其中,淀粉、脂肪、蛋白质、维生素为有机物。(水是无机物!)   2.淀粉(糖类)主要存在于大米、面粉等面食中;   油脂主要存在于食用油、冰激凌、牛奶等;   维生素主要存在于蔬菜、水果等;   蛋白质主要存在于鱼、肉、牛奶、蛋等;   纤维素主要存在于青菜中,有利于胃的蠕动,防止便秘。   其中淀粉、脂肪、蛋白质、纤维素是有机高分子有机化合物。 [编辑本段]分类:   一.根据碳原子结合而成的基本结构不同,有机化合物被分为三大类:1.链状化合物 这类化合物分子中的碳原子相互连接成链状,因其最初是在脂肪中发现的,所以又叫脂肪族化合物。2.碳环化合物 这类化合物分子中含有由碳原子组成的环状结构[2],故称碳环化合物。它又可分为两类:脂环族化合物:是一类性质和脂肪族化合物相似的碳环化合物。芳香族化合物:是分子中含有苯环或稠苯体系的化合物。3.杂环化合物:组成这类化合物的环除碳原子以外,还含有其它元素的原子,叫做杂环化合物。   二、按官能团分类   决定某一类化合物一般性质的主要原子或原子团称为官能团或功能基。含有相同官能团的化合物,其化学性质基本上是相同的。 [编辑本段]命名:   1.俗名及缩写   有些化合物常根据它的来源而用俗名,要掌握一些常用俗名所代表的化合物的结构式,如:木醇是甲醇的俗称,酒精(乙醇)、甘醇(乙二醇)、甘油(丙三醇)、石炭酸(苯酚)、蚁酸(甲酸)、水杨醛(邻羟基苯甲醛)、肉桂醛(β-苯基丙烯醛)、巴豆醛(2-丁烯醛)、水杨酸(邻羟基苯甲酸)、氯仿(三氯甲烷)、草酸(乙二酸)、苦味酸(2,4,6-三硝基苯酚)、甘氨酸(α-氨基乙酸)、丙氨酸(α-氨基丙酸)、谷氨酸(α-氨基戊二酸)、D-葡萄糖、D-果糖(用费歇尔投影式表示糖的开链结构)等。还有一些化合物常用它的缩写及商品名称,如:RNA(核糖核酸)、DNA(脱氧核糖核酸)、阿司匹林(乙酰水杨酸)、煤酚皂或来苏儿(47%-53%的三种甲酚的肥皂水溶液)、福尔马林(40%的甲醛水溶液)、扑热息痛(对羟基乙酰苯胺)、尼古丁(烟碱)等。   2.普通命名(习惯命名)法   要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法。   正:代表直链烷烃;   异:指碳链一端具有结构的烷烃;   新:一般指碳链一端具有结构的烷烃。   伯:只与一个碳相连的碳原子称伯碳原子。   仲:与两个碳相连的碳原子称仲碳原子。   叔:与三个碳相连的碳原子称叔碳原子。   季:与四个碳相连的碳原子称季碳原子。   如在下式中:   C1和C5都是伯碳原子,C3是仲碳原子,C4是叔碳原子,C2是季碳原子。   要掌握常见烃基的结构,如:烯丙基、丙烯基、正丙基、异丙基、异丁基、叔丁基、苄基等。   例如:   3.系统命名法   系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则。其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视。要牢记命名中所遵循的“次序规则”。   1.烷烃的命名:    烷烃的命名是所有开链烃及其衍生物命名的基础。   命名的步骤及原则:   (1)选主链 选择最长的碳链为主链,有几条相同的碳链时,应选择含取代基多的碳链为主链。   (2)编号 给主链编号时,从离取代基最近的一端开始。若有几种可能的情况,应使各取代基都有尽可能小的编号或取代基位次数之和最小。   (3)书写名称 用阿拉伯数字表示取代基的位次,先写出取代基的位次及名称,再写烷烃的名称;有多个取代基时,简单的在前,复杂的在后,相同的取代基合并写出,用汉字数字表示相同取代基的个数;阿拉伯数字与汉字之间用半字线隔开。   2.几何异构体的命名:   烯烃几何异构体的命名包括顺、反和Z、E两种方法。   简单的化合物可以用顺反表示,也可以用Z、E表示。用顺反表示时,相同的原子或基团在双键碳原子同侧的为顺式,反之为反式。   如果双键碳原子上所连四个基团都不相同时,不能用顺反表示,只能用Z、E表示。按照“次序规则”比较两对基团的优先顺序,两个较优基团在双键碳原子同侧的为Z型,反之为E型。必须注意,顺、反和Z、E是两种不同的表示方法,不存在必然的内在联系。有的化合物可以用顺反表示,也可以用Z、E表示,顺式的不一定是Z型,反式的不一定是E型。例如:   脂环化合物也存在顺反异构体,两个取代基在环平面的同侧为顺式,反之为反式。   3.光学异构体的命名:   光学异构体的构型有两种表示方法D、L和R、S,D 、L标记法以甘油醛为标准,有一定的局限性,有些化合物很难确定它与甘油醛结构的对应关系,因此,更多的是应用R、S标记法,它是根据手性碳原子所连四个不同原子或基团在空间的排列顺序标记的。光学异构体一般用投影式表示,要掌握费歇尔投影式的投影原则及构型的判断方法。   根据投影式判断构型,首先要明确,在投影式中,横线所连基团向前,竖线所连基团向后;再根据“次序规则”排列手性碳原子所连四个基团的优先顺序,在上式中:   -NH2 >-COOH >-CH2-CH3 >-H ;将最小基团氢原子作为以碳原子为中心的正四面体顶端,其余三个基团为正四面体底部三角形的角顶,从四面体底部向顶端方向看三个基团,从大到小,顺时针为R,逆时针为S 。    4.双官能团和多官能团化合物的命名:   双官能团和多官能团化合物的命名关键是确定母体。常见的有以下几种情况:   ① 当卤素和硝基与其它官能团并存时,把卤素和硝基作为取代基,其它官能团为母体。   ② 当双键与羟基、羰基、羧基并存时,不以烯烃为母体,而是以醇、醛、酮、羧酸为母体。   ③ 当羟基与羰基并存时,以醛、酮为母体。   ④ 当羰基与羧基并存时,以羧酸为母体。   ⑤ 当双键与三键并存时,应选择既含有双键又含有三键的最长碳链为主链,编号时给双键或三键以尽可能低的数字,如果双键与三键的位次数相同,则应给双键以最低编号。 [编辑本段]鉴别 :   在药品的生产、研究及检验等过程中,常常会遇到有机化合物的分离、提纯和鉴别等问题。有机化合物的鉴别、分离和提纯是三个既有关联而又不相同的概念。   分离和提纯的目的都是由混合物得到纯净物,但要求不同,处理方法也不同。分离是将混合物中的各个组分一一分开。在分离过程中常常将混合物中的某一组分通过化学反应转变成新的化合物,分离后还要将其还原为原来的化合物。提纯有两种情况,一是设法将杂质转化为所需的化合物,另一种情况是把杂质通过适当的化学反应转变为另外一种化合物将其分离(分离后的化合物不必再还原)。   鉴别是根据化合物的不同性质来确定其含有什么官能团,是哪种化合物。如鉴别一组化合物,就是分别确定各是哪种化合物即可。在做鉴别题时要注意,并不是化合物的所有化学性质都可以用于鉴别,必须具备一定的条件:   (1)化学反应中有颜色变化   (2)化学反应过程中伴随着明显的温度变化(放热或吸热)   (3)反应产物有气体产生   (4)反应产物有沉淀生成或反应过程中沉淀溶解、产物分层等。   本课程要求掌握的重点是化合物的鉴别,为了帮助大家学习和记忆,将各类有机化合物的鉴别方法进行归纳总结,并对典型例题进行解析。   一.各类化合物的鉴别方法   1.烯烃、二烯、炔烃:   (1)溴的四氯化碳溶液,红色褪去   (2)高锰酸钾溶液,紫色褪去。   2.含有炔氢的炔烃:   (1)硝酸银,生成炔化银白色沉淀   (2)氯化亚铜的氨溶液,生成炔化亚铜红色沉淀。   3.小环烃:三、四元脂环烃可使溴的四氯化碳溶液腿色   4.卤代烃:硝酸银的醇溶液,生成卤化银沉淀;不同结构的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀。   5.醇:   (1)与金属钠反应放出氢气(鉴别6个碳原子以下的醇);   (2)用卢卡斯试剂鉴别伯、仲、叔醇,叔醇立刻变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化。   6.酚或烯醇类化合物:   (1)用三氯化铁溶液产生颜色(苯酚产生蓝紫色)。   (2)苯酚与溴水生成三溴苯酚白色沉淀。   7.羰基化合物:   (1)鉴别所有的醛酮:2,4-二硝基苯肼,产生黄色或橙红色沉淀;   (2)区别醛与酮用托伦试剂,醛能生成银镜,而酮不能;   (3)区别芳香醛与脂肪醛或酮与脂肪醛,用斐林试剂,脂肪醛生成砖红色沉淀,而酮和芳香醛不能;   (4)鉴别甲基酮和具有结构的醇,用碘的氢氧化钠溶液,生成黄色的碘仿沉淀。   8.甲酸:用托伦试剂,甲酸能生成银镜,而其他酸不能。   9.胺:区别伯、仲、叔胺有两种方法   (1)用苯磺酰氯或对甲苯磺酰氯,在NaOH溶液中反应,伯胺生成的产物溶于NaOH;仲胺生成的产物不溶于NaOH溶液;叔胺不发生反应。   (2)用NaNO2+HCl:   脂肪胺:伯胺放出氮气,仲胺生成黄色油状物,叔胺不反应。   芳香胺:伯胺生成重氮盐,仲胺生成黄色油状物,叔胺生成绿色固体。   10.糖:   (1)单糖都能与托伦试剂和斐林试剂作用,产生银镜或砖红色沉淀;   (2)葡萄糖与果糖:用溴水可区别葡萄糖与果糖,葡萄糖能使溴水褪色,而果糖不能。   (3)麦芽糖与蔗糖:用托伦试剂或斐林试剂,麦芽糖可生成银镜或砖红色沉淀,而蔗糖不能。 [编辑本段]如何学习:   1、找本国内教科书学习好基本反应,不懂的地方不要死扣,主要加强印象,对于一些基本概念掌握好,如共振,octet rule,molecular orbital, Sn, E1等基本概念。推荐邢其毅的有机化学。不过先用不着看后面的章节如蛋白、糖等内容。   2.找本国外的有机化学原版书,如mcmurry或carey等人编的organic chemistry。熟悉外文专业词汇的同时,加深理解,老外写的书都深入浅出,并不难理解(除了英文讨厌以外)。   3、正式入门先看两本书grossman的The art of writing reasonable organic reaction mechanisms或miller的writing reaction mechanisms in organic chemistry。还有一本pushing electrons。 学习机理的写法和深入了解电子转移的内涵。不用记住里面的机理,主要学习从反应如何合理的推导机理。   3、阅读专题小册子,如国内超星上的亲核加成反应、饱和碳原子上的亲核取代反应历程等等按照基础反应特点介绍的小册子。也有一些外文书籍,我就不写了。   4、看一本立体化学方面的入门书籍,推荐oxford chemistry primer 系列Organic_Stereochemistry或longman公司出版的guide to organic stereochemistry。国内有超星上有一本较早的翻译自法国的有机立体化学入门(作者可能为henry kargan 记不太清),虽然有些观点较为过时,但写的较简单,适合初学者。   5、学习高等有机化学(主张中英文对照学习),carey或march的advanced organic chemistry 是经典,国内好像都有中译本,虽然译本年代较早,但有助于英文版的学习。学习是肯定不懂的地方很多,方法有两个一是在网上搜索不懂的概念(最好在专业英文网站找),二是找专题小册子。实在不懂就暂时一放,有一天你就会顿悟的。同时推荐havard 的 evans讲义对照学习,并学习上面的挑战问题。   6、学习有机立体电子效应(steroelectronic effects)的一本书,法国人写的中英文两种版本都有,我记不清了。fleming 或kirby的也很好,但很难搞到。   7、学习有机合成的书籍(如smith 编的 organic synthesis 很好,国内也有如黄培强编的有机合成也可以,黄宪也有)。有本小册子不错,guidebook to organic synthesis(世界图书出版公司)   8、如果想深入了解某领域的内容如杂环化学、糖化学等。可从浅入深的学习,先学习国内的小册子,千万别找国内的大布头看,再看外文专著(可找大部头看)。   9、看全合成文献或专著,能够帮助你通过实际问题理解所学有机理论。organic synthesis workbook 不错(共两册)或k C N 这个大牛写的经典全合成两本书。   10、手中常备书籍或电子资料:有机人名反应及机理、 有机合成中的保护基、金属有机化学、Organic Synthesis Collective、溶剂纯化(5th 外文)等就不列举了。   11、如果你是狂热的爱好者,那么再深入学习立体化学(Eliel 编的)、有机金属催化、多组分反应、氧化、还原、周环等高深功夫(都要看外文,^_^光Pd催化的就好几卷啊)。参考书不列了。   12、推荐多看老外写的Lecture notes,非常棒。 [编辑本段]几种常见的有机化合物   1、甲烷(天然气) 分子式为:CH4 特点:最简单的有机物   2、乙烯 分子式为:C2H4特点:最简单的烯烃(有碳碳双键)   3、乙醇(酒精) 分子式为:CH3CH2OH (C2H5OH)特点:最常见的有机物之一   4、乙酸(醋酸) 分子式为:CH3COOH 特点:同上   5、苯 分子式为:C6H6 特点:环状结构 [编辑本段]认识有机化合物的简史   人类使用有机物的历史很长,世界上几个文明古国很早就掌握了酿酒、造醋和制饴糖的技术。据记载,中国古代曾制取到一些较纯的有机物质,如没食子酸(982--992)、乌头碱(1522年以前)、甘露醇(1037--1101)等;16世纪后期,西欧制得了乙醚、硝酸乙酯、氯乙烷等。由于这些有机物都是直接或间接来自动植物体,因此,那时人们仅将从动植物体内得到的物质称为有机物。   1828年,德国化学家维勒(Friedrich Wohler)首次用无机物氰酸铵合成了有机物 ---- 尿素。但这个重要发现并没有立即得到其他化学家的承认,因为氰酸铵尚未能用无机物制备出来。直到柯尔柏(H.Kolbe)在1844年合成了醋酸,柏赛罗(M . Berthelot)在1854年合成了油脂等,有机化学才进入了合成时代,大量的有机物被用人工的方法合成出来。   人工合成有机物的发展,使人们清楚地认识到,在有机物与无机物之间并没有一个明确的界限,但在它们的组成和性质方面确实存在着某些不同之处。从组成上讲,所有的有机物中都含有碳,多数含氢,其次还含有氧、氮、卤素、硫、磷等,因此,化学家们开始将有机物定义为含碳的化合物。   [1] [编辑本段]有机化合物的特点   1.组成和结构之特点   有机化合物:种类繁多、数目庞大(已知有七百多万种、且还在不断增加)   但组成元素少 (C, H, O, N ,P, S, X等)   原因: 1) C原子自身相互结合能力强   2) 结合的方式多种多样(单键、双键、三键、链状、环状)   3) 同分异构现象 (构造异构、构型异构、构象异构)   例如,C2H6O就可以代表乙醇和甲醚两种不同的化合物、见P1   2. 质上的特点   物理性质方面特点   1) 挥发性大,熔点、沸点低(熔点一般不超过400℃)   2) 水溶性差 (大多不容或难溶于水,易溶于有机溶剂,如:酒精、汽油、四氯化碳、乙醚、苯)   化学性质方面的特性   1) 可燃性   2) 稳定性差(有机化合物常会因为温度、细菌、空气或光照的影响分解变质)   3)反应速率比较慢 4)反应产物复杂
机物种类繁多,可分为烃和烃的衍生物两大类。根据有机物分子中所含官能团的不同,又分为烷、烯、炔、芳香烃和醇、醛、羧酸、酯等等。根据有机物分子的碳架结构,还可分成开链化合物、碳环化合物和杂环化合物三类。 无机物么 就是那些酸碱盐 单质和氧化物
有机物即与机体有关的化合物(少数与机体有关的化合物是无机化合物,如水),通常指含碳元素的化合物,但一些简单的含碳化合物,如一氧化碳、二氧化碳、碳酸盐、金属碳化物、氰化物、碳酸(H2CO3)、硫氰化物等除外,其中心碳原子是以氢键结合。除含碳元素外,绝大多数有机化合物分子中含有氢元素,有些还含氧、氮、卤素 、硫和磷等元素。已知的有机化合物近8000万种。早期,有机化合物系指由动植物有机体内取得的物质 。自1828年维勒人工合成尿素【(NH2)2CO】后,有机物和无机物之间的界线随之消失,但由于历史和习惯的原因,“有机”这个名词仍沿用。有机化合物对人类具有重要意义,地球上所有的生命形式 ,主要是由有机物组成的。 无机物是与机体无关的化合物(少数与机体有关的化合物也是无机化合物引,如水),与有机化合物对应,通常指不含碳元素的化合物,但包括碳的氧化物、碳酸盐、氢化物等,简称无机物。
有机物就是含碳的化合物,无机物就是不含碳的化合物。但是,下列含碳的化合物,由于性质接近其它无机物,因此它们属于无机物
【无机物】 无机物是无机化合物的简称,通常指不含碳元素的化合物。少数含碳的化合物,如一氧化碳、二氧化碳、碳酸盐、氰化物等也属于无机物。无机物大致可分为氧化物、酸、碱、盐等。 【有机物】 定义 有机物通常指含碳元素的化合物,或碳氢化合物及其衍生物总称为有机物。 我是小聂
一般说来,,含C【碳元素】的叫有机物、除二氧化碳、碳酸盐外
为您推荐
Copyright© 2005-2022   www.sanqitong.com 版权所有 【内容整理自网络,若有侵权,请联系删除】 滇ICP备19000309号-2

服务热线:192-7871-9469 (微信同号,注明来源) 网址:www.sanqitong.com