买正宗三七,就上三七通
当前位置:首页/基地图片> 柠檬酸水解三七茎叶皂苷的意义,为什么百草枯中毒要用柠檬酸洗胃

柠檬酸水解三七茎叶皂苷的意义,为什么百草枯中毒要用柠檬酸洗胃

本文目录一览为什么百草枯中毒要用柠檬酸洗胃2,三七总皂苷与三七叶总皂苷功效区别谢谢3,喝过中药后能喝柠檬水解苦吗4,三七的茎叶花有什么功能5,改良LOWRY比色法与酚试剂法在原理上的不同6,溶液中铌的测定7,举例说明细菌分解代谢产物在细……

本文目录一览

1,为什么百草枯中毒要用柠檬酸洗胃

酸碱中和一下,减少伤害

柠檬酸水解三七茎叶皂苷的意义

2,三七总皂苷与三七叶总皂苷功效区别谢谢

你好,都是三七的提取物,三七总皂苷具有活血化瘀,消肿止痛的作用,而三七叶总皂苷具有补血强身,养血安神,扩张冠状动脉作用。望采纳

柠檬酸水解三七茎叶皂苷的意义

3,喝过中药后能喝柠檬水解苦吗

半小时后服用。
不可以的,会影响药效

柠檬酸水解三七茎叶皂苷的意义

4,三七的茎叶花有什么功能

00:00 / 02:0770% 快捷键说明 空格: 播放 / 暂停Esc: 退出全屏 ↑: 音量提高10% ↓: 音量降低10% →: 单次快进5秒 ←: 单次快退5秒按住此处可拖拽 不再出现 可在播放器设置中重新打开小窗播放快捷键说明

5,改良LOWRY比色法与酚试剂法在原理上的不同

不同浓度 0.01 0.025 ,0.05,0.1, 0.2mol L-1尿素溶液和20mLpH6.7 柠檬酸缓冲液37培养,培养结束后滤液中被脲酶水解成的氨氮用靛酚兰比色测定

6,溶液中铌的测定

分离重量法测定铌含量的方法,包括以下步骤: (a)将试样置于烧杯中以硝酸、氢氟酸并加热至试样完全溶解,随后加入高氯酸,持续加热至冒高氯酸烟,以驱除试样中所含的硅元素; (b)加入亚硫酸钠及丹宁酸加热煮沸使铌水解并沉淀分离;将沉淀过滤洗涤之后,连同滤纸置于原烧杯中,加硝酸、高氯酸破坏滤纸,随后再加入硫酸,加热至冒烟,溶解已产生的沉淀后,再次加入亚硫酸钠及丹宁酸加热煮沸使铌水解并沉淀分离,经灰化灼烧后称量五氧化二铌的质量; (c)根据称量的结果计算出铌元素的质量分数。

7,举例说明细菌分解代谢产物在细菌鉴定中的意义

1、实验原理 (1)细菌生化试验 各种细菌所具有的酶系统不尽相同,对营养基质的分解能力也不一样,因而代谢产物或多或少地各有区别,可供鉴别细菌之用。用生化试验的方法检测细菌对各种基质的代谢作用及其代谢产物,从而鉴别细菌的种属,称之为细菌的生化反应。 (2)糖(醇)类发酵试验 不同的细菌含有发酵不同糖(醇)的酶,因而发酵糖(醇)的能力各不相同。其产生的代谢产物亦不相同,如有的产酸产气,有的产酸不产气。酸的产生可利用指示剂来判定。在配制培养基时预先加入溟甲酚紫[P HS . 2 (黄色)一6 . 8 (紫色)] ,当发酵产酸时,可使培养基由紫色变为黄色。气体产生可由发酵管中倒置的杜氏小管中有无气泡来证明。 (3)甲基红(Methylred )试验(该试验简称MR 试验) 很多细菌,如大肠杆菌等分解葡萄糖产生丙酮酸,丙酮酸再被分解,产生甲酸、乙酸、乳酸等,使培养基的pH 降低到4 . 2 以下,这时若加甲基红指示剂呈现红色。因甲基红指示剂变色范围是pH4 . 4 (红色)一pH6 . 2 (黄色)。若某些细菌如产气杆菌,分解葡萄糖产生丙酮酸,但很快将丙酮酸脱梭,转化成醇等物,则培养基的pH 仍在6 . 2 以上,故此时加入甲基红指示剂,呈现黄色。 (4)大分子物质代谢实验. 靛基质(口引睬)试验 某些细菌,如大肠杆菌,能分解蛋白质中的色氨酸,产生靛基质(叫睬),靛基质与对二甲基氨基苯甲醛结合,形成玫瑰色靛基质(红色化合物)。 硫化氢试验 某些细菌能分解含硫的氨基酸(肌氨酸、半肌氨酸等),产生硫化氢,硫化氢与培养基中的铅盐或铁盐,形成黑色沉淀硫化铅或硫化铁。为硫化氢试验阳性,可借以鉴别细菌。 明胶液化实验 某些细菌具有胶原酶,使明胶被分解,失去凝固能力,呈现液体状态,是为阳性。淀粉水解试验(在紫外诱变中做,本实验不做) 细菌对大分子的淀粉不能直接利用,须靠产生的胞外酶(淀粉酶)将淀粉水解为小分子糊精或进一步水解为葡萄糖(或麦芽糖),再被细菌吸收利用,细菌水解淀粉的过程可通过底物的变化来证明,即用碘测定不再产生蓝色。 (5)有机酸盐及氨盐利用试验 柠檬酸盐利用试验 柠檬酸盐培养基系一综合性培养基,其中柠檬酸钠为碳的唯一来源。而磷酸二氢按是氮的唯一来源。有的细菌如产气杆菌,能利用柠檬酸钠为碳源,因此能在柠檬酸盐培养基上生长,并分解柠檬酸盐后产生碳酸盐,使培养基变为碱性。此时培养基中的溟廖香草酚蓝指示剂由绿色变为深蓝色。不能利用柠檬酸盐为碳源的细菌,在该培养基上不生长,培养基不变色。 2、实验仪器,材料和用具 (1)实验仪器 37OC 恒温培养箱、20OC 恒温培养箱(室温代替)。 (2)微生物材料 大肠杆菌、变形杆菌、枯草杆菌、产气杆菌这四种菌种的斜面各1 支。 (3)试剂 甲基红试剂、V . P 试剂、叫噪试剂、格里斯试剂(硝酸盐利用试验)、卢戈氏碘液(淀粉水解试验) (4)实验用具 试管:每份每个试验2 根试验,1 根对照,8 个试验共27 根。 无菌乎皿:每份2 个 杜氏小管:每份6 个。 接种环、酒精灯、试管架、记号笔。 (5)培养基 葡萄糖发酵培养基和乳糖发酵培养基:何份各6 支试管,何支5 一10mi 培养基,灭菌。用于糖类发酵试验。 葡萄糖蛋白陈水培养基:每份3 支试管,何支5 一10mi 培养基,灭菌。用于甲基红和V . P 试验。 胰蛋白水培养基:每份3 支何支5 一10mi 培养基,灭菌。用于叫睬试验。 柠檬酸铁钱或醋酸铅的半固体培养基;每份3 支,每支5 一10ml 培养基,灭菌。用于硫化氢试验。 营养明胶培养基:每份3 支,每支.5 一10ml 培养基、灭菌。用于明胶液化试验。 淀粉培养基:每份2 个平皿,每平皿约20ml 培养基,灭菌后倒入平皿。用于淀粉水解试验。 柠檬酸钠培养基:每份3 支,每支5 一IOml 培养基,灭菌,做斜面。用于柠檬酸盐利用试验。 3、实验步骤 (1)糖(醇)类发酵试验 编号在各试管上分别标明发酵培养基名称,所接种的菌名和组号,下同。 接种取葡萄糖发酵培养基3 支,按编号1 支接种大肠杆菌,另1 支接种普通变形杆菌,第3 支不接种,作为对照C 同样取3 支乳糖发酵培养基,1 支接种大肠杆菌,1 支接科普通变形杆菌,第3 支不接种,作为对照。 将己接种好的培养基置37OC 温箱中培养24h 。 观察结果:被检细菌若能发酵培养基中的糖时,则使培养基的pH 降低,这时培养基中的指示剂呈酸性反应(为黄色),若发酵培养基中的糖产酸产气,则培养基不仅显酸色反应,并且在培养基中倒置的小玻璃管(杜氏小管)中有气体。气体占整个倒置小玻管的10 %以上。若被检细菌不分解培养基中的糖,则培养基不发生变化。 (2)甲基红试验(MR 试验) 将大肠杆菌和产气杆菌分别接种到葡萄糖蛋白陈水培养基中,37OC 培养48h ,加甲基红指示剂数滴,观察结果,呈现红色者为阳性,呈现黄色者为阴性。 (3)伏一普二氏试验(V . P .试验) 将被检菌接种到葡萄糖蛋白陈水培养基中,37OC 培养48h ,取出,加入40 % KOlls 一10 滴,然后再加入等量的5 %。一蔡酚溶液,用力振荡,再放入37OC 温箱中保温巧一30min ,以加快反应速度。若培养物呈现红色,为伏一普反应阳性。 (4)靛基质(口引噪)试验将被检菌接种到胰蛋白陈水培养基中,37OC 培养24h 一48h 后,沿试管壁滴加数滴叫睬试剂于培养物液面,观察结果。 出现红色者为阳性,出现黄色者为阴性。 (5)硫化氢试验: 将大肠杆菌和变形杆菌以接种针穿刺接种到醋酸铅或柠檬酸铁氨培养基中,37OC 培养24h ,观察结果,若有黑色出现者为阳性。 (6)明胶液化试验 取大肠杆菌和枯草杆菌的纯培养物少许,以接种针分别穿刺接种到营养明胶培养基中,置20OC 培养5 一7 天。观察明胶培养基液化情况。若被检细菌20 OC 不易生长,可放3 7 OC 培养,但在此温度下明胶培养基呈液状,故观察结果时,应将明胶培养基轻轻放入4OC 冰箱30min ,此时明胶又凝固。若放置于冰箱30min 仍不凝固者,说明明胶被试验细菌液化,是为阳性。 (7)淀粉水解试验 将配制好的淀粉培养基冷却到SOOC 左右,以无菌操作制成平板。 用接种环取少许枯草杆菌划线接种在平板的一边,再取少许大肠杆菌划线接种在平板的另一边。置37OC 温箱培养24h 。 将平皿取出,打开皿盖,滴加少量卢戈氏碘液于平板上,轻轻摇动平皿,使碘液均匀铺满整个平板。如菌苔周围有无色透明圈出现,说明淀粉己被水解。透明圈的大小,说明该菌水解淀粉能力的大小。 (8)柠檬酸盐利用试验 取少量被检菌接种到柠檬酸盐培养基上,37OC 培养24h 后,观察结果。培养基变深蓝色者为阳性。培养基不变色,则继续培养7 天,培养基仍不变色者为阴性。 其实意义不是很大,一般是根据《伯氏细菌手册》看的,不过现在基本上都是用16S RNA来鉴定,要精确一些。

8,什么是三羟酸循环

三羟酸循环:一次循环,消耗一个2碳的乙酰CoA,共释放2分子CO2,8个H,其中四个来自乙酰CoA,另四个来自H2O,3个NADH+H+,1FADH2。此外,还生成一分子ATP。这个都只是一种说法,有些肥胖的人不是这种情况。平时吃好、睡好、多做运动,身体就会好的,不用太在意是否肥胖。
柠檬酸循环(citric acid cycle):也称为三羧酸循环(tricarboxylic acid cycle,tca),krebs循环。是用于乙酰coa中的乙酰基氧化成co2的酶促反应的循环系统,该循环的第一步是由乙酰coa经草酰乙酸缩合形成柠檬酸。 乙酰coa进入由一连串反应构成的循环体系,被氧化生成h2o和co2。由于这个循环反应开始于乙酰coa与草酰乙酸(oxaloacetate)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citric acid cycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。 其详细过程如下:? (1)乙酰coa进入三羧酸循环? 乙酰coa具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先从ch3co基上除去一个h+,生成的阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰coa中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthetase)催化,是很强的放能反应。 由草酰乙酸和乙酰coa合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,atp是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸、nadh能变构抑制其活性,长链脂酰coa也可抑制它的活性,amp可对抗atp的抑制而起激活作用。? (2)异柠檬酸形成? 柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。 (3)第一次氧化脱酸? 在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinate)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α?ketoglutarate)、nadh和co2,此反应为β-氧化脱羧,此酶需要mn2+作为激活剂。? 此反应是不可逆的,是三羧酸循环中的限速步骤,adp是异柠檬酸脱氢酶的激活剂,而atp,nadh是此酶的抑制剂。? (4)第二次氧化脱羧? 在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰coa、nadh+h+和co2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α?氧化脱羧,氧化产生的能量中一部分储存于琥珀酰coa的高能硫酯键中。? α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、nad+、fad)组成。? 此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受atp、gtp、naph和琥珀酰coa抑制,但其不受磷酸化/去磷酸化的调控。? (5)底物磷酸化生成atp? 在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰coa的硫酯键水解,释放的自由能用于合成gtp,在细菌和高等生物可直接生成atp,在哺乳动物中,先生成gtp,再生成atp,此时,琥珀酰coa生成琥珀酸和辅酶a。? (6)琥珀酸脱氢? 琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸氧化成为延胡索酸。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的fad,来自琥珀酸的电子通过fad和铁硫中心,然后进入电子传递链到o2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。? (7)延胡索酸的水化? 延胡索酸酶仅对延胡索酸的反式双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。? (8)草酰乙酸再生? 在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),nad+是脱氢酶的辅酶,接受氢成为nadh+h+(图4-5)。? 三羰酸循环总结:? 乙酰 coa+3nadh++fad+gdp+pi+2h2o?—→2co2+3nadh+fadh2+gtp+3h+ +coash?? ①co2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β?氧化脱羧,辅酶是nad+,它们先使底物脱氢生成草酰琥珀酸,然后在mn2+或mg2+的协同下,脱去羧基,生成α-酮戊二酸。 α-酮戊二酸脱氢酶系所催化的α?氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。? 应当指出,通过脱羧作用生成co2,是机体内产生co2的普遍规律,由此可见,机体co2的生成与体外燃烧生成co2的过程截然不同。? ②三羧酸循环的四次脱氢,其中三对氢原子以nad+为受氢体,一对以fad为受氢体,分别还原生成nadh+h+和fadh2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成atp,凡nadh+h+参与的递氢体系,每2h氧化成一分子h2o,生成3分子atp,而fadh2参与的递氢体系则生成2分子atp,再加上三羧酸循环中有一次底物磷酸化产生一分子atp,那么,一分子ch2co?scoa参与三羧酸循环,直至循环终末共生成12分子atp。? ③乙酰coa中乙酰基的碳原子,乙酰coa进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子co2,与进入循环的二碳乙酰基的碳原子数相等,但是,以co2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。 ④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。? 例如 草楚酰乙酸——→天门冬氨酸 α-酮戊二酸——→谷氨酸 草酰乙酸——→丙酮酸——→丙氨酸 其中丙酮酸羧化酶催化的生成草酰乙酸的反应最为重要。? 因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。? 三羧酸循环中生成 的苹果酸和草酰乙酸也可以脱羧生成丙酮酸,再参与合成许多其他物质或进一步氧化。? (二)糖有氧氧化的生理意义 1.三羧酸循环是机体获取能量的主要方式。1个分子葡萄糖经无氧酵解仅净生成2个分子atp,而有氧氧化可净生成38个atp,其中三羧酸循环生成24个atp,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于atp分子中,因此能的利用率也很高。? 2.三羧酸循环是糖,脂肪和蛋白质三种主要有机物在体内彻底氧化的共同代谢途径,三羧酸循环的起始物乙酰辅酶a,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。? 3.三羧酸循环是体内三种主要有机物互变的联结机构,因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物分解代谢的最终共同途径,而且也是它们互变的联络机构。? (三)糖有氧氧化的调节? 如上所述糖有氧氧化分为两个阶段,第一阶段糖酵解途径的调节在糖酵解部分已探讨过,下面主要讨论第二阶段丙酸酸氧化脱羧生成乙酰coa并进入三羧酸循环的一系列反应的调节。丙酮酸脱氢酶复合体、柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体是这一过程的限速酶。? 丙酮酸脱氢酶复合体受别位调控也受化学修饰调控,该酶复合体受它的催化产物atp、乙酰coa和nadh有力的抑制,这种别位抑制可被长链脂肪酸所增强,当进入三羧酸循环的乙酰coa减少,而amp、辅酶a和nad+堆积,酶复合体就被别位激活,除上述别位调节,在脊椎动物还有第二层次的调节,即酶蛋白的化学修饰,pdh含有两个亚基,其中一个亚基上特定的一个丝氨酸残基经磷酸化后,酶活性就受抑制,脱磷酸化活性就恢复,磷酸化-脱磷酸化作用是由特异的磷酸激酶和磷酸蛋白磷酸酶分别催化的,它们实际上也是丙酮酸酶复合体的组成,即前已述及的调节蛋白,激酶受atp别位激活,当atp高时,pdh就磷酸化而被激活,当atp浓度下降,激酶活性也降低,而磷酸酶除去pdh上磷酸,pdh又被激活了。? 对三羧酸循环中柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶的调节,主要通过产物的反馈抑制来实现的,而三羧酸循环是机体产能的主要方式。因此atp/adp与nadh/nad+两者的比值是其主要调节物。atp/adp比值升高,抑制柠檬酸合成酶和异柠檬酶脱氢酶活性,反之atp/adp比值下降可激活上述两个酶。nadh/nad+比值升高抑制柠檬酸合成酶和α-酮戊二酸脱氢酶活性,除上述atp/adp与nadh/nad+之外其它一些代谢产物对酶的活性也有影响,如柠檬酸抑制柠檬酸合成酶活性,而琥珀酰coa抑制α-酮戊二酸脱氢酶活性。总之,组织中代谢产物决定循环反应的速度,以便调节机体atp和nadh浓度,保证机体能量供给。?

9,请帮忙解释一下三羧酸循环 关键是第二步骤

三羧酸循环(tricarboxylic acid cycle)  由乙酰CoA和草酰乙酸缩合成有三个羧基的柠檬酸, 柠檬酸经一系列反应, 一再氧化脱羧, 经α酮戊二酸、 琥珀酸, 再降解成草酰乙酸。而参与这一循环的丙酮酸的三个碳原子, 每循环一次, 仅用去一分子乙酰基中的二碳单位, 最后生成两分子的CO2 , 并释放出大量的能量。  柠檬酸循环(Citric acid cycle):也称为三羧酸循环(tricarboxylic acid cycle,TCA),Krebs循环。是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。  (一)三羧酸循环的过程  乙酰CoA进入由一连串反应构成的循环体系,被氧化生成H2O和CO2。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloacetic acid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citrate cycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。 其详细过程如下:?   (1)乙酰-CoA进入三羧酸循环  乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶(citrate synthase)催化,是很强的放能反应。   由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。  (2)异柠檬酸形成  柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。  (3)第一次氧化脱羧  在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinic acid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α?ketoglutarate)、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为激活剂。  此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。  (4)第二次氧化脱羧  在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA、NADH·H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α?氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。  α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成。  此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的调控。  (5)底物磷酸化生成ATP  在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP,在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA生成琥珀酸和辅酶A。  (6)琥珀酸脱氢  琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸氧化成为延胡索酸。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。  (7)延胡索酸的水化  延胡索酸酶仅对延胡索酸的反式双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。  (8)草酰乙酸再生  在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH·H+(图4-5)。  三羰酸循环总结:  乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +CoA-SH  ①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β?氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸。  α-酮戊二酸脱氢酶系所催化的α?氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。  应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同。  ②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成ATP,凡NADH+H+参与的递氢体系,每2H氧化成一分子H2O,每分子NADH最终产生3分子ATP,而FADH2参与的递氢体系则生成2分子ATP,再加上三羧酸循环中有一次底物磷酸化产生一分子ATP,那么,一分子柠檬酸参与三羧酸循环,直至循环终末共生成12分子ATP。  ③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。  ④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。  例如 草酰乙酸——→天门冬氨酸  α-酮戊二酸——→谷氨酸  草酰乙酸——→丙酮酸——→丙氨酸  其中丙酮酸羧化酶催化的生成草酰乙酸的反应最为重要。  因为草酰乙酸的含量多少,直接影响循环的速度,因此不断补充草酰乙酸是使三羧酸循环得以顺利进行的关键。  三羧酸循环中生成 的苹果酸和草酰乙酸也可以脱羧生成丙酮酸,再参与合成许多其他物质或进一步氧化。  三羧酸循环的化学历程:  (1)柠檬酸生成阶段 乙酰CoA不能直接被氧化分解,必须改变其分子结构才有可能。乙酰CoA和草酰乙酸在柠檬酸合成酶催化下,弄成柠檬酰CoA,加水生成柠檬酸并放出CoA-SH。  (2)氧化脱羧阶段 这个阶段包括4个反应,即异柠檬酸的形成、愤柠檬酸的氧化脱羧、α-酮戊二酸氧化和琥珀酸生成,此阶段释放CO2并合成ATP。  (3)草酰乙酸的再生阶段 通过上述两个阶段的反应,乙酰CoA的两个碳以CO2形式释放了,四碳的草酰乙酸转变成四碳琥珀酸。 保证后续的乙酰CoA级继续被氧化脱羧,琥珀酸经过延胡索酸和苹果酸生成,最后生成草酰乙酸。  (二)三羧酸循环的生理意义  1.三羧酸循环是机体获取能量的主要方式。1个分子葡萄糖经无氧酵解仅净生成2个分子ATP,而有氧氧化可净生成32个ATP,其中三羧酸循环生成20个ATP,在一般生理条件下,许多组织细胞皆从糖的有氧氧化获得能量。糖的有氧氧化不但释能效率高,而且逐步释能,并逐步储存于ATP分子中,因此能的利用率也很高。  2.三羧酸循环是糖,脂肪和蛋白质三种主要有机物在体内彻底氧化的共同代谢途径,三羧酸循环的起始物乙酰CoA,不但是糖氧化分解产物,它也可来自脂肪的甘油、脂肪酸和来自蛋白质的某些氨基酸代谢,因此三羧酸循环实际上是三种主要有机物在体内氧化供能的共同通路,估计人体内2/3的有机物是通过三羧酸循环而被分解的。  3.三羧酸循环是体内三种主要有机物互变的联结机构,因糖和甘油在体内代谢可生成α-酮戊二酸及草酰乙酸等三羧酸循环的中间产物,这些中间产物可以转变成为某些氨基酸;而有些氨基酸又可通过不同途径变成α-酮戊二酸和草酰乙酸,再经糖异生的途径生成糖或转变成甘油,因此三羧酸循环不仅是三种主要的有机物分解代谢的最终共同途径,而且也是它们互变的联络机构。  (三)三羧酸循环的调节  如上所述糖有氧氧化分为两个阶段,第一阶段糖酵解途径的调节在糖酵解部分已探讨过,下面主要讨论第二阶段丙酸酸氧化脱羧生成乙酰CoA并进入三羧酸循环的一系列反应的调节。丙酮酸脱氢酶复合体、柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体是这一过程的限速酶。  丙酮酸脱氢酶复合体受别构调控也受化学修饰调控,该酶复合体受它的催化产物ATP、乙酰CoA和NADH有力的抑制,这种别构抑制可被长链脂肪酸所增强,当进入三羧酸循环的乙酰CoA减少,而AMP、CoA和NAD+堆积,酶复合体就被别构激活,除上述别位调节,在脊椎动物还有第二层次的调节,即酶蛋白的化学修饰,PDH含有两个亚基,其中一个亚基上特定的一个丝氨酸残基经磷酸化后,酶活性就受抑制,脱磷酸化活性就恢复,磷酸化-脱磷酸化作用是由特异的磷酸激酶和磷酸蛋白磷酸酶分别催化的,它们实际上也是丙酮酸酶复合体的组成,即前已述及的调节蛋白,激酶受ATP别构激活,当ATP高时,PDH就磷酸化而被激活,当ATP浓度下降,激酶活性也降低,而磷酸酶除去PDH上磷酸,PDH又被激活了。  对三羧酸循环中柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶的调节,主要通过产物的反馈抑制来实现的,而三羧酸循环是机体产能的主要方式。因此ATP/ADP与NADH/NAD+两者的比值是其主要调节物。ATP/ADP比值升高,抑制柠檬酸合成酶和异柠檬酶脱氢酶活性,反之ATP/ADP比值下降可激活上述两个酶。NADH/NAD+比值升高抑制柠檬酸合成酶和α-酮戊二酸脱氢酶活性,除上述ATP/ADP与NADH/NAD+之外其它一些代谢产物对酶的活性也有影响,如柠檬酸抑制柠檬酸合成酶活性,而琥珀酰-CoA抑制α-酮戊二酸脱氢酶活性。总之,组织中代谢产物决定循环反应的速度,以便调节机体ATP和NADH浓度,保证机体能量供给。
为您推荐
Copyright© 2005-2022   www.sanqitong.com 版权所有 【内容整理自网络,若有侵权,请联系删除】 滇ICP备19000309号-2

服务热线:192-7871-9469 (微信同号,注明来源) 网址:www.sanqitong.com