买正宗三七,就上三七通
当前位置:首页/三七成品> 三七根径,瓣E峰50CMS左室径67MM左室流出道25MM左室后壁10MM左房径

三七根径,瓣E峰50CMS左室径67MM左室流出道25MM左室后壁10MM左房径

瓣E峰50CMS左室径67MM左室流出道25MM左室后壁10MM左房径风湿性心脏病2,三七长什么样长在哪里三七长什么样子?三七的样子和形状00:00/02:0170%快捷键说明空格:播放/暂停……

1,瓣E峰50CMS左室径67MM左室流出道25MM左室后壁10MM左房径

风湿性心脏病

三七根径

2,三七长什么样长在哪里

三 七 长什么样子?三七的样子和形状 00:00 / 02:0170% 快捷键说明 空格: 播放 / 暂停Esc: 退出全屏 ↑: 音量提高10% ↓: 音量降低10% →: 单次快进5秒 ←: 单次快退5秒按住此处可拖拽 不再出现 可在播放器设置中重新打开小窗播放快捷键说明

三七根径

3,用三七根茎可以繁殖吗

种子繁殖,选三四年生三七所结的果实中成熟和饱满的种子,在冬季10-11月间,随采随播,播后用以肥料混合之火土覆盖一层,上面再盖草皮一层,促进其种子发芽。采用点播方式,行株距为3×2寸或3×3寸,每亩需种28-32万粒,覆土4-8分厚,稍压后再覆盖一层稻草,以防止杂草生长和水分蒸发,又可防止阴棚漏雨打烂畦面,影响幼苗生长。三七在苗床生长一年后必须易地移植。移植的新地须与苗床用同样方法整理,最好在大雪或冬至期间进行。边栽边盖土,厚度以不露出芽头为准,不宜太厚,再盖约0.3-0.5寸厚的碎草,以不见土为原则。扩展资料:生长习性喜温暖而阴荫湿的环境,怕严寒和酷暑,也畏多水。土壤为疏松红壤或棕红壤,微酸性;年平均气温16.0-19.3℃为宜。生长期间若气温持续3-5天,在30℃以上,植株易发病。栽培地宜选东坡,坡度5°-15°为宜。在低洼地种植易发生根腐病。栽培土地宜选择向阳山坡。土壤一般以沙质黑壤土为佳,灰土次之,红土更次。粘土不宜栽培。选地是引种三七成败的重要因素之一。宜选海拔700-1500米、东阳、坡度10-20度的山坡。

三七根径

4,请举例说说百分比概率和频率的区别

J,Q,k三张扑克牌 在一副扑克牌里占的百分比是26% 如果抽 被抽到的概率是0.26 被抽出现的频率是4分之1

5,三七长什么样子

三七(拉丁学名:Panax pseudoginseng Wall. var. notoginseng (Burkill) Hoo et Tseng) 又名参三七、田七、血山草、六月淋、蝎子草,古时亦称昭参、血参、人参三七、田三七、山漆、三七参等,属为伞形目五加科人参属多年生草本植物,是中国特有的名贵中药材,也是中国最早的药食同源植物之一,因其播种后三至七年挖采而且每株长三个叶柄, 每个叶柄生七个叶片,故名三七。 三七主要分布于云南、广西、江西、四川等地。三七是以其根部入药,其性温,味辛,具有显著的活血化瘀、消肿定痛功效,有“金不换”、“南国神草”之美誉。因常在春冬两季采挖,又分为“春七”和“冬七”。由于三七同为人参属植物,而它的有效活性物质又高于和多于人参,因此又被现代中药药物学家称为“参中之王”。清朝药学著作《本草纲目拾遗》中记载:“人参补气第一,三七补血第一,味同而功亦等,故称人参三七,为中药中之最珍贵者。”扬名中外的中成药“云南白药”和“片仔癀”,即以三七为主要原料制成。主治咯血,吐血,衄血,便血,崩漏,外伤出血,胸腹刺痛,跌扑肿痛。

6,彩色多普勒超声心动图诊断报告单

哦,有几个问题,我看是值得再看看清楚的,第一室间隔略微肥厚,正常一般是8-11mm,你这个略厚一点点。 左心室射血分数EF55%,也还可以。主动脉,肺动脉流速也在正常范围之内另外有一点要解释的是,这里提示的这个SV34ml,EDV仅仅是61ml,都很低,一般正常的每搏输出量SV都要在60ml以上。心腔内径似乎并不太小,舒张末期有44mm了,正常男性一般45-55mm,女性是35-50mm,每搏射出量这么少的原因是什么,应该说和你应用的是简化的Simpson法有关。也和你是用四心腔切面还是二心腔切面有关。所以不要错误看的。不过说实在的,心超这里像我小惠惠这么看的也估计没有别的人了。总之这个心超看不出什么太大问题的。还有最后那个CO,你估计是有失误的,不可能每分钟34ml,34毫升,这个人都死绝了。你到底是3.4L/min,3.4升/分呢还是别的。别马虎了。如果是3.4升/分的话,那么你心率是100次/分了,好像略微快一点了。
哦,你说的比较简单。缺少很多数据和具体描述。不过从这上面看,基本上没有什么了,也就是二尖瓣轻微的关闭不全。二尖瓣是左心房和左心室间的瓣膜,在舒张期开放,左心房的血流进入左心室,收缩期关闭,这样血液只能前向进入主动脉,射到全身,二尖瓣此时防止血流返流的。但这个患者是二尖瓣轻微的关闭不全,所以导致有血流返流到左心房,但是很轻微的,影响不大。左心室舒张功能障碍,我估计最可能就是什么e/a比例倒置,这一方面也和你瓣膜本身的情况有关,另外上点年纪的人也常常是这样的。综上所述,单单这个心超不考虑有什么临床意义。也更不需要什么处理的

7,心脏彩超报告单 谁能帮忙分析下病情

请问患者有过风湿热吗?有冠心病、高血压病史吗?主要问题是左心增大、二尖瓣轻度狭窄、主动脉瓣中度关闭不全以及前壁、侧壁、后壁运动减低。
主动脉瓣中度关闭不全 二尖瓣轻度狭窄你需要分析什么问题?
你好,这个病人的病不轻,主动脉瓣中度关闭不全,左室舒张末期内径80mm,建议换主动脉瓣,“前壁 侧壁 后壁运动明显减弱,余室壁运动欠佳”,不排除冠心病,建议做冠状动脉造影检查。希望以上答复对你有所帮助,祝病人健康。
1. <左房 左室增大 主动脉增宽>. 这多数都是高血压引起的, 如果你的血压长期不正常, 那么要注意你, 可以到医生那里开点降压药吃.2. <二尖瓣轻度狭窄,二尖瓣活动不规律>. 二尖瓣简单来说, 是阻止你心脏供血的时候阻止血向反方向回流(回流会减少供血量). 你的二尖瓣, 现在有一点点不正常, 现在问题也不算很大, 但要是继续恶化下去, 可能会引起严重的供血不足等等很多的问题. 3. <前壁 侧壁 后壁运动明显减弱>. 这个多数是高血压加平常运动不足引起的. 以后注意多运动. 最好的有氧运动, 跑步游水都可以, 每天至少30分钟.4. <左室心律不齐>. 你的医生没说是轻度不齐, 还是严重不齐. 心率不齐会引起供血减少, 长期还会引起血块凝固, 引起中风. 问题可大可少. 建议你注意饮食和多运动, 如果血压高的话, 记得吃药控制血压.
您好,小孩,性别:男 年龄:1天,心脏彩超报告单:动脉导管未闭、卵圆孔未闭、肺动脉压增高,就您心脏彩超描述,不是很详细,不知孩子动脉导管未闭、卵圆孔未闭的范围?肺高压的情况?这些是病情严重程度、治疗的时间和方式的指标。建议详细描述心脏彩超检查结果,以更好的帮您解答。希望我的回答给您带来帮助,祝您健康快乐。

8,管桩施工是否需要等试桩静载试验后才可进行管桩施工完成后多久进

静载荷试验和小应变试验通常在15至20天后进行。静载试验的目的是测量桩体的承载力。小应变是测量桩身质量,施工可以在试验后立即进行。静载试验的目的是验证管桩基础的承载力是否满足设计承载能力要求。桩的结构可以在静载荷试桩结构完成后立即进行。对于桩基,需要100%完整性测试,这意味着每个桩都有覆盖。完整性测试方法具有小应变,大应变和超声波。小应变要求桩的纵横比不应太大,因为桩长后能量衰减太大,测量不准确;大应变也可以测试承载能力(稍微不准确),超声波仅用于钻孔桩。 。这三种方法可以混合使用,全部包括在内;扩展资料:实验结果:S—㏒Q法的极限荷载是桩侧摩阻力得到充分发挥时的荷载,相应于极限荷载时的极限桩顶下沉量Su(即桩土间相对位移量)与桩的类型、桩径和施工方法等有关;对于同一施工类型的桩,一般说来,按摩擦桩、端承摩擦桩和摩擦端承桩的顺序排列,Su依次增大;大直径钻孔桩的Su值比小直径钻孔桩的Su值大;打入式预制桩和钻孔灌注桩的Su也有较大差别;施工工艺和施工质量对钻孔桩的极限荷载Qu和极限桩顶下沉量Su有较大影响。在桩的破32313133353236313431303231363533e59b9ee7ad9431333431366237坏模式研究方面,赵明华认为应分为三种模式,即:屈曲破坏、整体剪切破坏、刺入破坏;沈保汉认为应分为四种模式,即:端承摩擦桩的整体剪切破坏、摩擦桩的整体剪切破坏、摩擦端承桩的刺入剪切破坏、端承桩的屈曲破坏。在依靠桩的下沉量确定桩的极限承载力方面,我国《建筑地基基础设计规范》(GBJ7-89)规定:当Q-s曲线无明显的拐点时,可取桩顶总沉降量为40㎜时相应的荷载值为单桩极限承载力;《建筑桩基技术规范》(JGJ94-94)规定:对于缓变型Q~s曲线一般可取s=40~60mm对应的荷载,对大直径桩可取s=0.03~0.06D(D为桩端直径,大桩径取低值,小桩径取高值)所对应的荷载值;对于细长桩(l/d>80)可取s=60~80mm对应的荷载。参考资料:搜狗百科-桩基静载试验参考资料:搜狗百科-桩基施工
静载试验的目的是为了检验管桩基础的承载能力是否达到设计承载力要求。静载试桩施工完成后可以立即进行工程桩施工。
一般都在15到20天之后进行静载试验和小应变试验,静载试验的目的是测桩身的承载力,小应变是测桩身质量,试验之后可以立即施工。
对于工程桩静载试验(这里的静载试验默认指单桩竖向抗压静载荷试验,以下将不做说明)来说,只需要检测其单桩竖向抗压特征值是否达到设计要求,表现在试验过程中有这样几点: 1.上部荷载(或反力架)所提供的反力大于等于设计承载力的两倍即可; 2.试验分级为等间距分级,预估最大加载压力与设计承载力的两倍出入不会太大; 3.终止加载条件在合格桩的数据中,只需要最大加载压力大于等于设计承载力的两倍即可,试验数据(假设承载力都能达到设计要求)曲线完整、平滑、呈缓变型。 对于试桩静载试验来说,要做出极限荷载,并且为设计单位确定单桩竖向抗压承载力特征值提供依据,所以在整个试验过程中会有以下几点与工程桩静载试验不同: 1.上部荷载(或反力架)所提供的反力远大于该地区同类型桩(同规格桩并且场地地质条件类似)单桩竖向抗压极限承载力经验值; 2.试验分级一般根据预估最大加载压力等间距分级,但预估最大加载压力不确定,可根据该场地岩土勘察报告计算出一个近似值。 3.最终沉降量一般大于40mm,具体终止加载条件应当为出现能判定竖向抗压承载力的特征为止(jgj106-2003及gb50021-2001中均有提及桩的竖向抗压极限承载力取值条件)。 一句话概括就是,工程桩静载试验是验证设计单位所提供的承载力,最大加载量(加载压力)确定;试桩静载试验是为设计单位提供确定承载力的依据,最大加载量(加载压力)不确定。然后就是数据分析下结论的时候有点不一样而已。
管桩啊大哥~桩头处理完就可以做低应变了,又不存在混凝土龄期。工程桩施工前做静载确定桩端承载力
对于桩基需要复100%进行完整性测试,就是说每根桩都有覆盖。完整性测试方法有小应变、大应变、和超声波。小应变要求桩的长径比不能太大,因制为桩长了后百能量衰减太多,测不准;大应变还能测试出一个承载力(准确度稍差),超声度波仅用于钻孔灌注桩。三种方法可以混用,全部覆盖即可

9,请懂数学的人进去所有初中数学的公式 谢谢大家

光记事没用的,应多做提!!!做多了,公事就记住了
初中数学知识点归纳. 有理数的加法运算 同号两数来相加,绝对值加不变号。 异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。 【注】“大”减“小”是指绝对值的大小。 有理数的减法运算 减正等于加负,减负等于加正。 有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 合并同类项 说起合并同类项,法则千万不能忘。 只求系数代数和,字母指数留原样。 去、添括号法则 去括号或添括号,关键要看连接号。 扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。 解方程 已知未知闹分离,分离要靠移完成。 移加变减减变加,移乘变除除变乘。 平方差公式 两数和乘两数差,等于两数平方差。 积化和差变两项,完全平方不是它。 完全平方公式 二数和或差平方,展开式它共三项。 首平方与末平方,首末二倍中间放。 和的平方加联结,先减后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。 和的平方加再加,先减后加差平方。 解一元一次方程 先去分母再括号,移项变号要记牢。 同类各项去合并,系数化“1”还没好。 求得未知须检验,回代值等才算了。 解一元一次方程 先去分母再括号,移项合并同类项。 系数化1还没好,准确无误不白忙。 因式分解与乘法 和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。 因式分解 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积2倍坐中央。 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。 重组无望试求根,换元或者算余数。 多种方法灵活选,连乘结果是基础。 同式相乘若出现,乘方表示要记住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分组,叉乘求根也上数。 五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。 二次三项式的因式分解 先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。 比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。 分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。 前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。 两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。 解比例 外项积等内项积,列出方程并解之。 求比值 由已知去求比值,多种途径可利用。 活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。 正比例与反比例 商定变量成正比,积定变量成反比。 正比例与反比例 变化过程商一定,两个变量成正比。 变化过程积一定,两个变量成反比。 判断四数成比例 四数是否成比例,递增递减先排序。 两端积等中间积,四数一定成比例。 判断四式成比例 四式是否成比例,生或降幂先排序。 两端积等中间积,四式便可成比例。 比例中项 成比例的四项中,外项相同会遇到。 有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会碰到。 成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。 同数平方等异积,比例中项无处逃。 根式与无理式 表示方根代数式,都可称其为根式。 根式异于无理式,被开方式无限制。 被开方式有字母,才能称为无理式。 无理式都是根式,区分它们有标志。 被开方式有字母,又可称为无理式。 求定义域 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。 指是分数底正数,数零没有零次幂。 限制条件不唯一,满足多个不等式。 求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。 解一元一次不等式 先去分母再括号,移项合并同类项。 系数化“1”有讲究,同乘除负要变向。 先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”注意了。 同乘除正无防碍,同乘除负也变号。 解一元一次不等式组 大于头来小于尾,大小不一中间找。 大大小小没有解,四种情况全来了。 同向取两边,异向取中间。 中间无元素,无解便出现。 幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大) 军营里没老没少。(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,构造函数第二站。 判别式值若非负,曲线横轴有交点。 a正开口它向上,大于零则取两边。 代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。 小于零将没有解,开口向下正相反。 用平方差公式因式分解 异号两个平方项,因式分解有办法。 两底和乘两底差,分解结果就是它。 用完全平方公式因式分解 两平方项在两端,底积2倍在中部。 同正两底和平方,全负和方相反数。 分成两底差平方,方正倍积要为负。 两边为负中间正,底差平方相反数。 一平方又一平方,底积2倍在中路。 三正两底和平方,全负和方相反数。 分成两底差平方,两端为正倍积负。 两边若负中间正,底差平方相反数。 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 调整系数随其后,使其成为最简比。 确定参数abc,计算方程判别式。 判别式值与零比,有无实根便得知。 有实根可套公式,没有实根要告之。 用常规配方法解一元二次方程 左未右已先分离,二系化“1”是其次。 一系折半再平方,两边同加没问题。 左边分解右合并,直接开方去解题。 该种解法叫配方,解方程时多练习。 用间接配方法解一元二次方程 已知未知先分离,因式分解是其次。 调整系数等互反,和差积套恒等式。 完全平方等常数,间接配方显优势 【注】 恒等式 解一元二次方程 方程没有一次项,直接开方最理想。 如果缺少常数项,因式分解没商量。 b、c相等都为零,等根是零不要忘。 b、c同时不为零,因式分解或配方, 也可直接套公式,因题而异择良方。 正比例函数的鉴别 判断正比例函数,检验当分两步走。 一量表示另一量, 初中数学口诀 上海市同洲模范学校 宋立峰 有理数的加法运算 同号两数来相加,绝对值加不变号。 异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。 【注】“大”减“小”是指绝对值的大小。 有理数的减法运算 减正等于加负,减负等于加正。 有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 合并同类项 说起合并同类项,法则千万不能忘。 只求系数代数和,字母指数留原样。 去、添括号法则 去括号或添括号,关键要看连接号。 扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。 解方程 已知未知闹分离,分离要靠移完成。 移加变减减变加,移乘变除除变乘。 平方差公式 两数和乘两数差,等于两数平方差。 积化和差变两项,完全平方不是它。 完全平方公式 二数和或差平方,展开式它共三项。 首平方与末平方,首末二倍中间放。 和的平方加联结,先减后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。 和的平方加再加,先减后加差平方。 解一元一次方程 先去分母再括号,移项变号要记牢。 同类各项去合并,系数化“1”还没好。 求得未知须检验,回代值等才算了。 解一元一次方程 先去分母再括号,移项合并同类项。 系数化1还没好,准确无误不白忙。 因式分解与乘法 和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。 因式分解 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积2倍坐中央。 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。 重组无望试求根,换元或者算余数。 多种方法灵活选,连乘结果是基础。 同式相乘若出现,乘方表示要记住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分组,叉乘求根也上数。 五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。 二次三项式的因式分解 先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。 比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。 分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。 前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。 两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。 解比例 外项积等内项积,列出方程并解之。 求比值 由已知去求比值,多种途径可利用。 活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。 正比例与反比例 商定变量成正比,积定变量成反比。 正比例与反比例 变化过程商一定,两个变量成正比。 变化过程积一定,两个变量成反比。 判断四数成比例 四数是否成比例,递增递减先排序。 两端积等中间积,四数一定成比例。 判断四式成比例 四式是否成比例,生或降幂先排序。 两端积等中间积,四式便可成比例。 比例中项 成比例的四项中,外项相同会遇到。 有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会碰到。 成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。 同数平方等异积,比例中项无处逃。 根式与无理式 表示方根代数式,都可称其为根式。 根式异于无理式,被开方式无限制。 被开方式有字母,才能称为无理式。 无理式都是根式,区分它们有标志。 被开方式有字母,又可称为无理式。 求定义域 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。 指是分数底正数,数零没有零次幂。 限制条件不唯一,满足多个不等式。 求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。 解一元一次不等式 先去分母再括号,移项合并同类项。 系数化“1”有讲究,同乘除负要变向。 先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”注意了。 同乘除正无防碍,同乘除负也变号。 解一元一次不等式组 大于头来小于尾,大小不一中间找。 大大小小没有解,四种情况全来了。 同向取两边,异向取中间。 中间无元素,无解便出现。 幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大) 军营里没老没少。(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,构造函数第二站。 判别式值若非负,曲线横轴有交点。 a正开口它向上,大于零则取两边。 代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。 小于零将没有解,开口向下正相反。 用平方差公式因式分解 异号两个平方项,因式分解有办法。 两底和乘两底差,分解结果就是它。 用完全平方公式因式分解 两平方项在两端,底积2倍在中部。 同正两底和平方,全负和方相反数。 分成两底差平方,方正倍积要为负。 两边为负中间正,底差平方相反数。 一平方又一平方,底积2倍在中路。 三正两底和平方,全负和方相反数。 分成两底差平方,两端为正倍积负。 两边若负中间正,底差平方相反数。 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 调整系数随其后,使其成为最简比。 确定参数abc,计算方程判别式。 判别式值与零比,有无实根便得知。 有实根可套公式,没有实根要告之。 用常规配方法解一元二次方程 左未右已先分离,二系化“1”是其次。 一系折半再平方,两边同加没问题。 左边分解右合并,直接开方去解题。 该种解法叫配方,解方程时多练习。 用间接配方法解一元二次方程 已知未知先分离,因式分解是其次。 调整系数等互反,和差积套恒等式。 完全平方等常数,间接配方显优势 【注】 恒等式 解一元二次方程 方程没有一次项,直接开方最理想。 如果缺少常数项,因式分解没商量。 b、c相等都为零,等根是零不要忘。 b、c同时不为零,因式分解或配方, 也可直接套公式,因题而异择良方。 正比例函数的鉴别 判断正比例函数,检验当分两步走。 一量表示另一量, 是与否。 若有还要看取值,全体实数都要有。 正比例函数是否,辨别需分两步走。 一量表示另一量, 有没有。 若有再去看取值,全体实数都需要。 区分正比例函数,衡量可分两步走。 一量表示另一量, 是与否。 若有还要看取值,全体实数都要有。 正比例函数的图象与性质 正比函数图直线,经过 和原点。 k正一三负二四,变化趋势记心间。 k正左低右边高,同大同小向爬山。 k负左高右边低,一大另小下山峦。 一次函数 一次函数图直线,经过 点。 k正左低右边高,越走越高向爬山。 k负左高右边低,越来越低很明显。 k称斜率b截距,截距为零变正函。 反比例函数 反比函数双曲线,经过 点。 k正一三负二四,两轴是它渐近线。 k正左高右边低,一三象限滑下山。 k负左低右边高,二四象限如爬山。 二次函数 二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 a定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 a定开口及大小,开口向上是正数。 绝对值大开口小,开口向下a负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。 【注】基础抛物线 直线、射线与线段 直线射线与线段,形状相似有关联。 直线长短不确定,可向两方无限延。 射线仅有一端点,反向延长成直线。 线段定长两端点,双向延伸变直线。 两点定线是共性,组成图形最常见。 角 一点出发两射线,组成图形叫做角。 共线反向是平角,平角之半叫直角。 平角两倍成周角,小于直角叫锐角。 直平之间是钝角,平周之间叫优角。 互余两角和直角,和是平角互补角。 一点出发两射线,组成图形叫做角。 平角反向且共线,平角之半叫直角。 平角两倍成周角,小于直角叫锐角。 钝角界于直平间,平周之间叫优角。 和为直角叫互余,互为补角和平角。 证等积或比例线段 等积或比例线段,多种途径可以证。 证等积要改等比,对照图形看特征。 共点共线线相交,平行截比把题证。 三点定型十分像,想法来把相似证。 图形明显不相似,等线段比替换证。 换后结论能成立,原来命题即得证。 实在不行用面积,射影角分线也成。 只要学习肯登攀,手脑并用无不胜。 解无理方程 一无一有各一边,两无也要放两边。 乘方根号无踪迹,方程可解无负担。 两无一有相对难,两次乘方也好办。 特殊
初中数学知识点归纳.有理数的加法运算同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算减正等于加负,减负等于加正。有理数的乘法运算符号法则同号得正异号负,一项为零积是零。合并同类项说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。【注】 一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例外项积等内项积,列出方程并解之。求比值由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例商定变量成正比,积定变量成反比。正比例与反比例变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。A正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】 恒等式解一元二次方程方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别判断正比例函数,检验当分两步走。一量表示另一量,初中数学口诀上海市同洲模范学校 宋立峰有理数的加法运算同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算减正等于加负,减负等于加正。有理数的乘法运算符号法则同号得正异号负,一项为零积是零。合并同类项说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。【注】 一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例外项积等内项积,列出方程并解之。求比值由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例商定变量成正比,积定变量成反比。正比例与反比例变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。A正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】 恒等式解一元二次方程方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别判断正比例函数,检验当分两步走。一量表示另一量, 是与否。若有还要看取值,全体实数都要有。正比例函数是否,辨别需分两步走。一量表示另一量, 有没有。若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量, 是与否。若有还要看取值,全体实数都要有。正比例函数的图象与性质正比函数图直线,经过 和原点。K正一三负二四,变化趋势记心间。K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数一次函数图直线,经过 点。K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。反比例函数反比函数双曲线,经过 点。K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很显眼。如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。列表描点后连线,平移规律记心间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及大小,开口向上是正数。绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。如果要画抛物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线直线、射线与线段直线射线与线段,形状相似有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。角一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。直平之间是钝角,平周之间叫优角。互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。证等积或比例线段等积或比例线段,多种途径可以证。证等积要改等比,对照图形看特征。共点共线线相交,平行截比把题证。三点定型十分像,想法来把相似证。图形明显不相似,等线段比替换证。换后结论能成立,原来命题即得证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。解无理方程一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。特殊情况去换元,得解验根是必然。解分式方程先约后乘公分母,整式方程转化出。特殊情况可换元,去掉分母是出路。求得解后要验根,原留增舍别含糊。列方程解应用题列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两办法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。添加辅助线学习几何体会深,成败也许一线牵。分散条件要集中,常要添加辅助线。畏惧心理不要有,其次要把观念变。熟能生巧有规律,真知灼见靠实践。图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。倘若知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈现。角分线若加垂线,等腰三角形可见。角分线加平行线,等线段角位置变。已知线段中垂线,连接两端等线段。辅助线必画虚线,便与原图联系看。两点间距离公式同轴两点求距离,大减小数就为之。与轴等距两个点,间距求法亦如此。平面任意两个点,横纵标差先求值。差方相加开平方,距离公式要牢记。矩形的判定任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。菱形的判定任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形。已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。
为您推荐
Copyright© 2005-2022   www.sanqitong.com 版权所有 【内容整理自网络,若有侵权,请联系删除】 滇ICP备19000309号-2

服务热线:192-7871-9469 (微信同号,注明来源) 网址:www.sanqitong.com